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1. INTRODUCTION

Spectral methods approximate functions by projection onto a space PN of orthogo-
nal polynomials of degree ≤ N . When the underlying function is periodic trigono-
metric (Fourier) polynomials are employed while a popular choice for non-periodic
functions are the Chebyshev polynomials. Legendre polynomials are another op-
tion in the non-periodic case but are not as popular in applications due to the
lack of a fast transform method. However spectral methods based on other, non-
classical orthogonal polynomials are possible as well. For example see references
[Chen et al. 2005] and [Weideman 1999]. Spectral methods yield extremely accurate
approximations of smooth functions. Due to their excellent approximation prop-
erties, spectral methods have become popular in applications such as numerical
partial differential equations. However, when functions are only piecewise smooth
the well-known Gibbs phenomenon appears as an accuracy reduction to first order
away from discontinuities and O (1) oscillations in the neighborhoods of jumps. The
Gibbs phenomenon is illustrated in figure 1 for both the Fourier and Chebyshev
approximation of the function

f(x) = χ[−0.5,0.5] ∗ sin[cos(x)] (1)

that will be used throughout to demonstrate the software.
A number of methods have been suggested for the purpose of reducing or elim-

inating the Gibbs phenomenon. They include: spectral filtering [Vandeven 1991],
physical space filtering using mollifiers [Gottlieb and Tadmor 1985; Tadmor and
Tanner 2002; 2005; Tadmor 2007; Tanner 2006], digital total variation filtering
[Sarra 2006a], rational reconstruction [Min et al. 2007; Hesthaven et al. 2006], and
a variety of direct [Gottlieb and Shu 1997; Gelb and Tanner 2006] and indirect
[Shizgal and Jung 2003; Jung and Shizgal 2004] reprojection methods. The most
powerful methods need to know the exact location of all discontinuities.

The purpose of this paper is to describe a Matlab software package, the Matlab
Postprocessing Toolkit (MPT), that implements edge detection and postprocessing
algorithms for Chebyshev and Fourier spectral methods in one and two space di-
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2 · Scott A. Sarra

mensions. The software is intended for applications, algorithm benchmarking, and
educational purposes. The MPT is a significant extension and translation of the
Spectral Signal Processing Suite (SSPS) [Sarra 2003c]. The SSPS was implemented
in the Java programming language which limited its usefulness. The SSPS only im-
plemented edge detection, spectral filtering, and Gegenbauer Reprojection, for one
dimensional Chebyshev approximations. The MPT is implemented in a language
known by a large number of scientists and engineers and is broader in the scope of
algorithms implemented. Details of the available user callable M-files along with
a selection of example problems and associated results may be found in the user
manual distributed with the software.
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Fig. 1. Spectral approximation of function (1) vs. the exact function. The function is known at
N = 200 interpolation sites and the interpolant is evaluated at M = 298 evenly spaced points.
Left: Fourier. Right: Chebyshev.

2. GLOBAL POLYNOMIAL APPROXIMATION METHODS

The software package is based on interpolation, rather than expansion, methods
incorporating Chebyshev and trigonometric polynomials. Interpolation and expan-
sion methods have the same excellent approximation properties but we have chosen
interpolation since pseudospectral methods for PDEs are based on interpolation.
The interpolating approximation

INf(x) =
∑

k

ak φk(x) (2)

with expansion coefficients ak and basis functions φk(x) on interval Ω = [−1, 1],
satisfies INf(xi) = f(xi) at N + 1 interpolation sites xi. Interpolation means
that f(x), the function that is approximated, is a known function (at least at the
interpolation sites) while the terms collocation and pseudospectral are applied to
global polynomial interpolatory methods for solving differential equations for an
unknown function f(x). We refer to both situations as spectral approximation or
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spectral methods. Detailed information on spectral methods may be found in the
standard references [Boyd 2000; Canuto et al. 2006; Hesthaven et al. 2007; Reyret
2002; Trefethen 2000].

2.1 Chebyshev Interpolation

In (2) the index k runs over k = 0, 1, . . . , N and the basis functions are the Cheby-
shev polynomials [Mason and Handscomb 2003]

φk(x) = Tk (x) = cos(k arccos (x)). (3)

The expansion coefficients are efficiently calculated via the FFT (chebyshevCoeffi-
cients.m). The interpolation sites are the Chebyshev-Gauss-Lobatto (CGL) points

xk = − cos

(

kπ

N

)

k = 0, 1, . . . , N. (4)

The CGL points are the locations of the N−1 extrema of TN (x) plus the endpoints
of the interval [−1, 1].

2.2 Fourier (Trigonometric) Interpolation

The degree 2N Fourier approximation method uses evenly spaced interpolation
sites

xk = −1 +
2

N
k, k = 0, 1, . . . , N − 1 (5)

on [−1, 1]. In (2) the index k runs over k = −N,−N + 1, . . . , N and the basis
functions are the trigonometric polynomials

φk(x) = eikπx. (6)

The expansion coefficients are efficiently calculated via the FFT.

3. EDGE DETECTION

The majority of postprocessing algorithms either require or may incorporate the
exact location of discontinuities, or edges, in the function. Edge detection meth-
ods have been developed in references [Gelb and Tadmor 1999; 2000a]. Two
choices of concentration factors are available in the edge detection routines, a
linear concentration factor of σ(ξ) = ξ and an exponential concentration factor
σ(ξ) = ξ exp( 1

6ξ(ξ−1) ). Details on concentration factors can be found in references

[Gelb and Tadmor 1999] and [Gelb and Tadmor 2000a].
The edges are located by examining a weighted derivative of the spectral inter-

polant

ue(x) = w
d

dx
INf(x) (7)

where the weight is w = 1/N in the Fourier case and w = π
√

1 − x2/N for the
Chebyshev case. Denoting the location of discontinuities as αj and defining jumps
as

[f ](x) := f(x+) − f(x−)
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the convergence of ue(x) to the location of the discontinuities may be described as

ue(x) →
{

O
(

1
N

)

when x 6= αj

[f ] (αj) when x = αj .

While a graphical examination of ue(x) verifies that it does have the desired conver-
gence properties, an additional step is needed to numerically pinpoint the location
of the discontinuities. For that purpose, a non-linear enhancement [Gelb and Tad-
mor 2000a] is made to ue(x) as

un(x) = N
Q
2 [ue(x)]Q.

The enhanced sum has the convergence properties

un(x) →
{

O
(

N
−Q
2

)

when x 6= αj

N
Q
2 [[f ] (αj)]

Q
when x = αj .

By choosing Q > 1, the separation is enhanced between the O([ 1
N ]

Q
2 ) points of

smoothness and the O(N
Q
2 ) points of discontinuity. The problem dependent thresh-

old parameter J is then used to pinpoint the location of all jumps and the edges
are located by redefining ue(x) as

ue(x) =

{

ue(x) if |un(x)| > J
0 otherwise.

Computational experience [Sarra 2003c] has lead to the inclusion of an additional
parameter η which controls the number of edges that can be found in the neigh-
borhood of a local maximum of ue(x). If the maximum occurs at x(i), then the
parameter allows only one edge to be found in the interval (x[i − η], x[i + η]),
i = 0, ..., N .

The edge detection procedure can be employed repeatedly to find discontinuities
in the ℓth derivative of a function and to determine intervals of Cℓ-smoothness. For
example, to find the discontinuities in the first derivative, first the locations of the
discontinuities in the function are found. Then in each smooth subinterval, INf(x)
is differentiated and the edge detection procedure is applied to find the jumps in
the first derivative. An example describing edge detection in a function and its first
derivative can be found in reference [Gelb and Tadmor 2000b].

4. POSTPROCESSING METHODS

4.1 Spectral Filters

Spectral filters [Vandeven 1991] lessen the effects of the Gibbs phenomenon by
working in transform space as

FNf(x) =
∑

k

σ(k/N) ak φk(x) (8)

The convergence rate of the filtered approximation is determined solely by the
order, ρ > 1, of the filter and the regularity of the function away from the point
of discontinuity. If the filter order, ρ, is chosen increasing with N , the filtered
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expansion recovers exponential accuracy away from a discontinuity. Assuming that
f(x) has a discontinuity at x0 and setting d(x) = x− x0, the estimate

|f(x) −FN (x)| ≤ K

d(x)ρ−1Nρ−1
(9)

holds where K is a constant. If ρ is sufficiently large, and d(x) is not too small,
the error goes to zero faster than any finite power of N , i.e. spectral accuracy is
recovered. When x is close to a discontinuity the error increases. If d(x) = O(1/N)
then the error estimate is O(1).

The following ρth order spectral filters are implemented in the MPT:

(1) exponential filter

σ1(ω) = e(ln εm) ωρ

, (10)

where ρ even and εm represents machine zero.

(2) Erfc-Log filter [Boyd 1996]

σ2(ω) =
1

2
erfc

(

2
√
ρ [|ω| − 1/2]

√

− ln (1 − 4 [|ω| − 1/2]
2
)

4 [|ω| − 1/2]
2

)

(11)

(3) Vandeven filter [Vandeven 1991]

σ3(ω) = 1 − (2ρ− 1)!

(p− 1)!

∫ |ω|

0

tρ−1(1 − t)ρ−1dt. (12)

4.2 Digital Total Variation Filtering

The Rudin, Osher, and Fatemi (ROF) Total Variation (TV) denoising model is a
popular image processing method to remove noise from a digital image. The model
formulates a minimization problem which leads to a nonlinear Euler-Lagrange PDE
to be solved by numerical PDE methods. In [Chan et al. 2001; Osher and Shen 2000]
the authors develop a discrete version of the TV model on a graph - Digital Total
Variation (DTV) filtering. Viewing an oscillatory function as an image with noise,
the DTV method was used to postprocess spectral approximations in [Sarra 2006a]
and Radial Basis Function approximations in [Sarra 2006b]. The method works with
point values in physical space and not with the spectral expansion coefficients. The
DTV method does not need to know the location of edges. The point values may
be located at scattered, non-structured sites, in complex geometries. The DTV
method is very computationally efficient. While the method does mitigate the
effects of the Gibbs phenomenon it does not make any claims of restoring spectral
accuracy.

To summarize the method, let [Ω, G] be a finite set Ω of nodes and a dictionary
of edges G connecting the nodes. General vertices are denoted by α, β, · · · . The
notation α ∼ β indicates that α and β are linked by an edge. All the neighbors of
α are denoted by

Nα = {β ∈ Ω |β ∼ α}. (13)

The graph variational problem is to minimize the fitted TV energy

ETV
λ (u) =

∑

α∈Ω

|∇αu|a +
λ

2

∑

α∈Ω

(uα − u0
α)2 (14)
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where u0 is the spectral approximation containing the Gibbs oscillations and λ the
user specified fitting parameter. The unique solution to this problem is the solution
of the nonlinear restoration equation

∑

β∼α

(uα − uβ)

(

1

|∇αu|a
+

1

|∇βu|a

)

+ λ(uα − u0
α) = 0 (15)

where the regularized location variation or strength function at any node α is
defined as

|∇αu|a =





∑

β∈Nα

(uβ − uα)2 + a2





1/2

. (16)

The regularization parameter a is a small (the default in the software is a = 0.0001)
value used to prevent a zero local variation and division by zero.

The nonlinear system can be solved by a linearized Jacobi iteration as was done
in [Chan et al. 2001; Sarra 2006a; 2006b]. Alternatively, we can work with the
nonlinear restoration equation (15) and use time marching to reach a steady state

duα

dt
=
∑

β∼α

(uα − uβ)

(

1

|∇αu|a
+

1

|∇βu|a

)

+ λ(uα − u0
α). (17)

Preconditioning equation (17)

duα

dt
=
∑

β∼α

(uα − uβ)

(

1 +
|∇αu|a
|∇βu|a

)

+ λ |∇αu|a (uα − u0
α). (18)

yields a faster convergence to the steady state [Osher and Shen 2000]. The software
uses time marching with the explicit Euler’s method. Typically about 100 time steps
are required to approach a steady state. An optimal value of the fitting parameter
λ is not known. However, a large range of values for the fitting parameter results
in a “good” postprocessing. In general, stronger oscillations are best handled with
a small fitting parameter (< 10) while weaker oscillations require a larger value of
the fitting parameter. More details on selecting the value of the shape parameter
can be found in references [Sarra 2006a] and [Sarra 2009].

In two space dimensions there is more than one way to define Nα (figure 2). One
is to consider at a node αi,j four neighboring points,

N4
α = {αi,j+1, αi+1,j , αi,j−1, αi−1,j}

and another is an eight point neighborhood,

N8
α = {αi,j+1, αi+1,j+1, αi+1,j , αi+1,j−1, αi,j−1, αi−1,j−1, αi−1,j , αi−1,j+1}.

4.3 Rational Reconstruction

Rational functions have been used in several different forms to reduce the Gibbs
phenomenon [Clenshaw and Lord 1974; Driscoll and Fornberg 2001; Hesthaven and
Kaber 2008; Hesthaven et al. 2006; Min et al. 2007]. Rational functions are more
complex than simple polynomials and often do better in approximation discontin-
uous functions or functions with steep gradients.
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A Padé approximant is of the form

RK,M =
PK

QM
=

∑K
k=0 pkφk(x)

∑M
m=0 qmφm(x)

(19)

The linear Padé approximation of a function u is determined by imposing the
orthogonality relations

〈QMu− PK , φ〉 = 0, ∀φ ∈ PN (20)

From this, a linear system with M + 1 unknowns and K − N equations can be
extracted. Reference [Hesthaven and Kaber 2008] can be consulted for details.
After the degree of the denominator M is chosen the degree of the numerator
is set as K = (N − Nc) − M where Nc <= N is a cutoff value that specifies
how many of the high order expansion coefficients are not used to form the Padé
approximation. This is necessary since a significant portion of the high modes are
polluted when discontinuous functions are approximated [Hesthaven et al. 2006;
Min et al. 2007]. This results in a linear system with one more unknown than
equation. In the Chebyshev case (chebyshevPade.m based on [Clenshaw and Lord
1974]) this is resolved by setting q0 = 1 which leaves a M ×M linear system to
be solved for q1, . . . , qM . In the Fourier case (fourierPade.m) we have followed the
method outlined in [Min et al. 2007].

The rational reconstruction code of the MPT does not incorporate edge detection.
However, if we are to recover spectral accuracy at the point of a discontinuity
[Driscoll and Fornberg 2001] or to accurately postprocess computational data from
a PDE problem, it will be necessary to use the locations of discontinuities. A
discussion of how to incorporate edge detection into the rational reconstruction
algorithms and numerical examples can be found in reference [Hesthaven et al.
2006].

4.4 Reprojection Methods

Reprojection methods take the spectral projection and project in onto another
basis. In the new basis, spectral accuracy is recovered. Let ξ(x) be the map that
takes x ∈ [a, b] to ξ ∈ [−1, 1] and let x(ξ) be the inverse of the map. In each of the
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i smooth subintervals [a, b] the function is reprojected as

f i
P (x) =

mi
∑

ℓ=0

gi
ℓΨℓ[ξ(x)] (21)

onto a basis Ψℓ(x) of polynomials, the reprojection basis, which are orthogonal on
[−1, 1] with respect to a weight function w(x) under the weighted inner product
(Ψk(ξ),Ψk(ξ))w which satisfies

(Ψk(ξ),Ψℓ(ξ))w =

∫ 1

−1

Ψk(ξ)Ψℓ(ξ)w(ξ)dξ = γℓδkℓ (22)

where γℓ is a normalization factor. The expansion coefficients gi
ℓ are evaluated

via a Gaussian quadrature formula. If the function being approximated is known
at the quadrature points, gi

ℓ are referred to as the exact reprojection coefficients.
Otherwise the spectral interpolant (2) is used to approximate the function at the
quadrature points and the coefficients are referred to as the approximate reprojec-
tion coefficients ĝi

ℓ.
The accuracy of the reprojection methods depends on accurately locating all

discontinuities and intervals of smoothness. Failure to identify a discontinuity will
cause the methods to fail badly. However, the methods are fairly robust to misiden-
tifying the location of a discontinuity within a cell or two. This is because the weight
of the reprojection basis tapers smoothly to zero at its boundaries and the repro-
jection coefficients are computed by multiplying the original function or its spectral
projection by the reprojection weight. In the neighborhood of discontinuities, the
result of the multiplication is very small if the weight is properly designed and
crossing a discontinuity by a few cells will only result in a correspondingly small
error.

4.4.1 Gegenbauer Reprojection. The Gegenbauer Reprojection Procedure (GRP)
uses the Gegenbauer or Ultraspherical polynomials Cλ

ℓ as the reprojection basis.
The GRP was developed in the series of papers [Gottlieb et al. 1992; Gottlieb and
Shu 1994; 1996; 1995a; 1995b; 1997]. Further analysis and application of the GRP
can be found in references [Boyd ; Jackiewicz 2003; Sarra 2003a; 2003b]. Reference
[Boyd ] describes how the convergence of the GRP is adversely affected when the
underlying function has singularities off the real axis.

The Gegenbauer polynomials satisfy the conditions of a Gibbs complementary
basis [Hesthaven et al. 2007] which allows for a spectrally accurate reprojection.
The weight function associated with the Gegenbauer polynomials is w(x) = (1 −
ξ2)λ−1/2. The Gegenbauer polynomials (gegenbauerPolynomial.m) are calculated
via the three term recurrence relation

Cλ
k+1(ξ) =

2(k + λ)ξ

k + 1
Cλ

k (ξ) − k + 2λ− 1

k + 1
Cλ

k−1(ξ), k = 1, 2, . . . (23)

with Cλ
0 = 1 and Cλ

1 = 2λξ.
In smooth subinterval i the GRP postprocessed approximation is

f i
P (x) =

mi
∑

ℓ=0

gi
ℓC

λ
ℓ [ξ(x)] (24)
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where the exact Gegenbauer expansion coefficients are

gi
ℓ =

1

γλ
ℓ

∫ 1

−1

(1 − ξ2)λ−1/2Cλ
ℓ (ξ)f [x(ξ)]dξ (25)

and

γλ
ℓ = π

1

2

Γ(ℓ+ 2λ)Γ(λ + 1
2 )

ℓ!Γ(2λ)Γ(λ)(n + λ)
.

If only the expansion coefficients ak are known and not the underlying function, as
in a pseudospectral PDE approximation, the Gegenbauer coefficients are replaced
with the approximate Gegenbauer coefficients

ĝi
ℓ =

1

γλ
ℓ

∫ 1

−1

(1 − ξ2)λ−1/2Cλ
ℓ (ξ)INf [x(ξ)]dξ. (26)

The integrals in (25) and (26) are evaluated via Chebyshev-Gauss-Lobatto quadra-
ture.

4.4.2 Freud Reprojection. The Freud Reprojection Procedure (FRP) [Gelb 2007;
Gelb and Tanner 2006] uses the Freud polynomials ψ as the reprojection basis and

the weight function is w(ξ) = e−cξ2λ

where λ = αN , 0 < α < 1, and c = ln ǫM

where ǫM is machine epsilon. We have used λ = round
(

√

N(b− a)/2 − 2
√

(2)
)

which was suggested in [Gelb and Tanner 2006].
In [Gelb and Tanner 2006] an additional condition is added to the three conditions

that a Gibbs complementary basis must satisfy. A basis that satisfies the four
conditions is called a Robust Gibbs complement. The Freud polynomial basis is an
example of a Robust Gibbs complement. Freud reprojection does not suffer from
the numerical roundoff errors and the Runge phenomenon that the GRP does [Boyd
]. The Freud polynomials are not known explicitly but can be computed recursively
as

ψk+1(ξ) = ξψk(ξ) − γk

γk−1
ψk−1(ξ)

where ψ0(ξ) = 1 and ψ1(ξ) = ξ. The recursion coefficients are

γk = (ψk(ξ), ψk(ξ))w =

∫ 1

−1

ψk(ξ)ψk(ξ)e−cξ2λ

dξ. (27)

The exact Freud coefficients are

gi
ℓ =

1

γℓ

∫ −1

1

e−cξ2λ

ψℓ(ξ)f [x(ξ)]dξ. (28)

and the approximate Freud coefficients are

ĝi
ℓ =

1

γℓ

∫ −1

1

e−cξ2λ

ψℓ(ξ)INf [x(ξ)]dξ. (29)

Integrals (27), (28), and (29) are evaluated very accurately using the trapezoid
rule which is exponentially accurate for smooth periodic functions. In smooth
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subinterval i the FRP approximation is

f i
P (x) =

mi
∑

ℓ=0

gi
ℓψℓ[ξ(x)]. (30)

In each subinterval of smoothness mi is set mi = N(b − a)/8. However, as N in-
creases the number of terms in the reprojection basismi is more than is necessary to
numerically resolve the function and the higher numbered reprojection coefficients
become very close to machine epsilon which leads to round-off errors. As described
on p. 15 of [Gelb and Tanner 2006], the round-off errors can be avoided by re-
setting mi to a value that prevents the average of three consecutive reprojection
coefficients from being larger than a specified tolerance. Experimentally we have
found a tolerance of 10e-12 to work well in the Fourier case and 10e-8 to work well
with Chebyshev approximations.

For the FRP, the specification of M is not function-dependent as is the case for
the GRP. The FRP does not have any function-dependent parameters to be supplied
by the user. This is in contrast to the GRP which depends heavily on the proper
specification of both a weight parameter λ and reprojection order M . Numerical
evidence indicates that the FRP recovers exponential accuracy. However, due to
the incomplete knowledge of the Freud polynomials, this result has not been proven
to hold.

4.4.3 Inverse Reprojection. The Gegenbauer and Freud reprojection methods
are referred to as direct methods as they compute the reprojection coefficients
directly from the spectral expansion coefficients ak (or function values). In contrast,
inverse methods compute the reprojection coefficients by solving a linear system of
equations

Wg = a.

The Inverse Reprojection method was developed in [Jung and Shizgal 2004; 2005;
Shizgal and Jung 2003]. A recent application of the Inverse Reprojection method to
time-dependent PDE solutions can be found in [Abdi and Hosseini 2008]. Originally
[Shizgal and Jung 2003], the Gegenbauer polynomials were used as the reprojection
basis, but later [Jung and Shizgal 2004; 2005] the method was generalized to yield
a unique reconstruction using any set of basis functions. The generalized method
is referred to as the inverse polynomial reconstruction method (IPRM).

We have implemented the method using the Gegenbauer polynomials as the re-
construction basis. Note that since the IPRM uniquely determines the reconstruc-
tion for any reconstruction basis, the Gegenbauer parameter λ does not play a role
in the method as it does in the GRP method. The matrix W may be very ill-
conditioned. This problem is addressed in reference [Jung and Shizgal 2007]. The
conditioning of W is best for small λ > 0 [Shizgal and Jung 2003]. In the computer
code the default is λ = 1/2 which corresponds to the Legendre basis. Care has been
taken to consistently evaluate the spectral expansion coefficients and the integrals
that determine the elements of the matrix W as is discussed in [Jung and Shizgal
2004]. Both are evaluated using Gaussian quadrature.
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5. GRAPHICAL USER INTERFACE

The Matlab functions of the MPT may be called directly from user written Matlab
code as we have illustrated in the examples provided in the user manual that ac-
companies the software. Additionally, to make the MPT functions more accessible
to non-Matlab users a graphical user interface (GUI) has been developed. The
GUI has built-in functions and pseudospectral PDE solutions that can be used to
demonstrate and benchmark the algorithms. The Fourier PDE examples include
linear advection and inviscid Burger’s equation and the Chebyshev examples in-
clude linear advection and the Euler equations of gas dynamics. More details of the
GUI may be found in the GUI user guide which is also include with the distributed
software. A screen shot of the GUI is shown in figure 3.

Fig. 3. Graphical user interface

6. CONCLUDING COMMENTS

We have described a suite of Matlab programs that implement state-of-the-art
postprocessing and edge detection algorithms for Fourier and Chebyshev spectral
approximations of piecewise smooth functions in one and two space dimensions.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 2009.
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Postprocessing methods that require one or more user defined parameters be spec-
ified in each smooth subregion are difficult to implement in two space dimensions.
For this reason, the MPT only implements spectral filtering and DTV filtering in
two dimensions. Although not the most powerful one dimensional methods, they
are very computationally efficient and the closest to “black box” algorithms in two
dimensions. In two dimensional applications, many of the one dimensional methods
can been applied to one dimensional slices in the x or y direction. This approach
has been taken in references [Jung and Shizgal 2005] and [Min et al. 2007].

The MPT functions may be called directly from a Matlab script. Alternatively,
the routines may be accessed from a GUI. The postprocessing functions and ac-
companying GUI with built-in example functions and PDE solutions provide users
the opportunity to benchmarch and demonstrate the postprocessing algorithms.
Experienced Matlab users will find it easy to modify the GUI to incorporate their
own algorithms or example problems. The development of the MPT is ongoing and
modifications and extensions will be made as new algorithms are developed.

We conclude with table 6 that summarizes the basic feature of the postprocessing
algorithms.

edge spectral large
method detection parameters accuracy κ(A)
spectral filter ρ ∼
DTV λ
Padé ∼ M,Nc

√

GRP
√

λ,mi
√

FRP
√ √∗

IPRM
√

mi
√ √

A
√

in the edge detection column indicates the method must know the exact lo-
cation of the discontinuities while a ∼ indicates that the edge location may be
incorporated to improve the method. The parameters column lists any user speci-
fied parameters. If the method incorporates edge detection the parameters must be
specified in each subinterval of smoothness. A

√
in the spectral accuracy column

indicates the method is able to recover spectral accuracy over the entire interval
while a ∼ indicates that spectral accuracy may be recovered over a portion of the
interval sufficiently away from the edge locations. The

√∗ in the spectral accuracy
column of the FRP indicates numerically observed but not theoretical proven spec-
tral accuracy. A

√
in the large κ(A) column indicates that a linear system must be

solved to implement the method and that the matrix may have a large condition
number.
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