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A software suite written in the Java programming language for the postprocessing of Chebyshev
approximations to discontinuous functions is presented. It is demonstrated how to use the package
to remove the effects of the Gibbs-Wilbraham phenomenon from Chebyshev approximations of
discontinuous functions. Additionally, the package is used to postprocess Chebyshev collocation
and Chebyshev super spectral viscosity approximations of hyperbolic partial differential equations.
The postprocessing method is the Gegenbauer reconstruction procedure. The Spectral Signal
Processing Suite is the first publicly available package that implements the procedure. State of
the art techniques are used to implement the algorithms with efficiency while reducing round-off
error.
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Differential Equations]- spectral methods

General Terms: Algorithms
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1. INTRODUCTION

Spectral approximations based on Chebyshev polynomials are exponentially ac-
curate for analytic functions. However, for discontinuous but piecewise analytic
functions, the spectral partial sum approximates the function poorly throughout
the domain. Away from the discontinuities, only first order accuracy is achieved.
Near the discontinuity there are O(1) oscillations which do not decrease with N , the
number of terms retained in the spectral partial sum. This is known as the Gibbs-
Wilbraham phenomenon. The problem is reduced to one of signal processing in
order to recover spectral accuracy.

Several methods exist for postprocessing spectral approximations. One class of
postprocessing methods consists of variations of the spectral mollification (SM) idea
which was originally developed in [Gottlieb and Tadmor 1985]. Spectral mollifica-
tion involves applying a two parameter family of filters. The method can recover
spectral accuracy up to within a neighborhood of each discontinuity. The Gibbs
phenomenon can be removed, but some smearing at the discontinuity locations
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will occur. This idea is discussed in more detail in [Kaber and Mahmoud 1994]
and examples of using the method to postprocess PDE solutions are contained in
[Kaber 1996]. The method of [Gottlieb and Tadmor 1985] can be improved upon if
the locations of the edges are known [Gelb 2000; Tadmor and Tanner 2002]. This
allows one of the two parameters to be optimized which leads to increased accuracy
away from the discontinuities and less smearing at the discontinuities. Further opti-
mization of the method is considered in [Tadmor and Tanner 2002]. While Spectral
Mollification may be applied with or without the knowledge of the location of edges
(discontinuities) in the function, better results are achieved when the locations of
the edges are known.

Another way to postprocess spectral approximations is the Padé-based algorithm
for removing the Gibbs phenomenon from Fourier approximations [Driscoll and
Fornberg 2001]. The algorithm is stated in the context of Fourier approximations,
but could possibly be extended to non-periodic Chebyshev approximations.

The postprocessing method that is the focus of the current version of the Spec-
tral Signal Processing Suite (SSPS) is the Gegenbauer Reconstruction Procedure
(GRP) [Gottlieb et al. 1992; Gottlieb and Shu 1997; 1996; 1995a; 1995b]. The GRP
is capable of recovering spectral accuracy at every point, even at the locations of
the discontinuities. However, despite showing more potential than Spectral Molli-
fication, the GRP is not as robust as the SM postprocessing methods due to two
un-optimized parameters used by the method. The GRP will need to know the
location of edges in the function. The purpose of this paper and software package
is to describe and implement the state of the art Gegenbauer Reconstruction Pro-
cedure and Edge Detection algorithms. Prior to release 1.0 of the Spectral Signal
Processing Suite, publicly available software that implemented the algorithms was
not available.

The GRP may also be used to recover spectral accuracy from approximations of
Partial Differential Equation (PDE) solutions arising from Chebyshev pseudospec-
tral methods [Gottlieb and Shu 1995b]. In the context of postprocessing PDE
solutions, the term edges refers to discontinuities and shocks. If the spectral approx-
imation is to a nonlinear hyperbolic conservation law, spectral viscosity will need
to be added to the approximation in order to obtain a stable approximation which
converges to the exact entropy solution [Tadmor 1989]. While the spectral viscosity
solution is a highly accurate approximation to the collocation solution, only partial
theoretical justification can be found for using the postprocessing method on the
spectral viscosity solution. Nevertheless, numerical results indicate that exponen-
tial accuracy can be achieved by applying the Gegenbauer postprocessing procedure
to the spectral viscosity solution [Gelb and Tadmor 2000b]. The same can be said
about the edge detection method. The theoretical results are limited to locating
the jump discontinuities of a piecewise smooth function, but numerical evidence
advocates applying the edge detection procedure to the spectral viscosity solution.
In the examples, we have used the Super Spectral Viscosity method (SSV) of [Ma
1998].

This paper is organized a follows. Section 2 reviews approximation by a Cheby-
shev partial sum. Section 3 summarizes a method developed in [Gelb and Tadmor
2000a] to locate edges in a function. Section 4 summarizes the Gegenbauer Recon-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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struction Procedure (GRP) postprocessing method. Section 5 describes the soft-
ware suite. Section 6 presents examples of using the software suite to reconstruct
piecewise analytic functions and examples of using the methods to postprocess the
numerical solution of PDEs by Chebyshev pseudospectral methods. The numerical
examples will emphasize both a local approach and a global approach for selecting
the reconstruction parameters.

2. CHEBYSHEV APPROXIMATIONS

By a Chebyshev approximation of a function, we mean the Chebyshev partial sum

uN (x) =
N∑

n=0

anTn(x). (1)

The discrete Chebyshev coefficients, an, are defined by

an =
2
N

1
cn

N∑
n=0

u(xj)Tn(xj)
cj

where cj =
{

2 when j = 0, N
1 otherwise. (2)

The Chebyshev polynomials are known in closed form as

Tk (x) = cos(k arccos (x)). (3)

The Chebyshev pseudospectral method is based on assuming that an unknown
PDE solution, u, can be represented by a global, interpolating, Chebyshev partial
sum of the form (1). More detailed information on pseudospectral methods may be
found in the standard references [Canuto et al. 1988; Fornberg 1996; Funaro 1992;
Gottlieb and Orszag 1977; Gottlieb et al. 1984; Trefethen 2000].

If the PDE solution contains shocks, the Chebyshev pseudospectral method will
not converge to the correct entropy solution [Tadmor 1989]. In this case, a spectrally
small viscosity term must be added in order to stabilize the approximation and
ensure convergence to the entropy solution. This can be done without sacrificing
spectral accuracy and can be accomplished in several different ways, with each way
being labelled a particular type of spectral viscosity method. In the examples, we
have used the super spectral viscosity (SSV) method of [Ma 1998]. The reader is
referred to [Sarra 2003a] for details on the implementation of the SSV method to
the example problems.

3. EDGE DETECTION

If the exact location of discontinuities, or edges, in a piecewise analytic function are
known, the Gegenbauer Reconstruction Procedure recovers spectral accuracy at all
points, including the discontinuity points. If a PDE solution is being postprocessed
and the solution contains rarefaction waves, discontinuities in the first derivative
of the function will exist and will need to be located. The method used to find
the edges originated in [Gelb and Tadmor 2000a] for periodic and non-periodic
functions. The method is specialized to approximations of functions by Chebyshev
methods and is summarized below.
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Denote the location of discontinuities as αj . Let

[f ](x) := f(x+)− f(x−)

denote a local jump in the function and define

ue(x) =
π
√

1− x2

N

N∑

k=0

ak
d

dx
Tk(x) (4)

where
d

dx
Tk(x) =

k sin(k arccos(x))√
1− x2

.

Essentially, we are looking at the derivative of the spectral projection of the nu-
merical approximation to determine the location of the discontinuities. The series
ue(x) has the convergence properties

ue(x) →
{

O
(

1
N

)
when x 6= αj

[f ] (αj) when x = αj .

The series converges to both the height and direction of the jump at the location
of a discontinuity. However, the GRP does need the direction, it only needs the
magnitude and location of the jumps. While a graphical examination of the series
ue(x) verifies that the series does have the desired convergence properties, an ad-
ditional step is needed to numerically pinpoint the location of the discontinuities.
For that purpose, make a non-linear enhancement to the edge series as

un(x) = N
Q
2 [ue(x)]Q

The values, un(x), will serve to amplify the separation of scales which has taken
place in (4). The series has the convergence properties

un(x) →
{

O
(
N

−Q
2

)
when x 6= αj

N
Q
2 [[f ] (αj)]

Q when x = αj .

By choosing Q > 1 we enhance the separation between the O([ 1
N ]

Q
2 ) points of

smoothness and the O(N
Q
2 ) points of discontinuity. The parameter J , whose value

will be problem dependent, is a critical threshold value. Finally, redefine ue(x) as

ue(x) =
{

ue(x) if un(x) > J
0 otherwise.

With Q large enough, one ends up with an edge detector ue(x) = 0 at all but O( 1
N )

neighborhoods of the discontinuities x = αj . Only those edges with amplitude
larger than J1/Q

√
1/N will be detected.

Often the series ue is slow to converge in the area of a discontinuity and the
nonlinear enhancement has a difficulty pinpointing the exact location of the edge. If
an additional parameter, η, is added to the procedure this problem can be overcome
in a simple manner. The parameter specifies that only one edge may be located
in the interval (x[i− η], x[i + η]), i = 0, ..., N , with appropriate one sided intervals
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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being considered near boundaries. The correct edge will be the maximum of ue in
this subinterval. The value of η is problem dependent and is best chosen after the
edge detection procedure has been applied once.

The edge detection parameters J , Q, and η, are all problem dependent. Various
combinations of the parameters may be used to successfully locate edges represented
by jumps of magnitude in a certain range.

As mentioned previously, if a PDE solution is being postprocessed and the so-
lution contains rarefaction waves, the first derivative of the solution will also have
discontinuities and the edge detection procedure will have to be used to examine
the first derivative of the solution in each piecewise smooth subinterval. After the
shock locations are determined, the numerical solution can be differentiated in each
C0 smooth interval. Then, the locations of the discontinuities in the function and
its derivatives are arranged in increasing order.

In most situations, it is sufficient to consider a more näıve approach which is
easier to implement. If the numerical solution is differentiated over the entire
computational domain, neighborhoods of noise will exist around the points where
the edges in the solution were found. However, if the rarefaction waves are far
enough away from the shock locations, edges in the derivative of the function can
be successfully located by searching only a subinterval of the computational domain
which is clear of any influence from the shocks.

4. GEGENBAUER RECONSTRUCTION PROCEDURE

The GRP works by expanding the function in another basis, the Gibbs complemen-
tary basis, via knowledge of the known Chebyshev coefficients and the location of
discontinuities. The Chebyshev partial sums are projected onto a space spanned
by the Gegenbauer polynomials. The approximation converges exponentially in the
new basis even though it only converged very slowly in the original basis due to the
Gibbs-Wilbraham phenomenon. The choice of a Gibbs complementary basis is the
Ultraspherical or Gegenbauer polynomials, Cλ

n . The Gegenbauer polynomials are
orthogonal polynomials of order n which satisfy

∫ 1

−1

(1− x2)λ−1/2Cλ
k (x)Cλ

n(x)dx =
{

hλ
n k = n

0 k 6= n

where (for λ > 0)

hλ
n = π

1
2 Cλ

n(1)
Γ(λ + 1

2 )
Γ(λ)(n + λ)

with

Cλ
n(1) =

Γ(n + 2λ)
n!Γ(2λ)

.

Methods to implement the Gegenbauer Polynomials of degree (λ,m) are in the class
gegenbauerPolynomial of the SSPS.

The Gegenbauer expansion of a function u(x), x ∈ [−1, 1] is

u(x) =
∞∑

l=0

f̂λ
l Cλ

l (x)
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where the continuous Gegenbauer coefficients, f̂λ
l , of u(x) are

f̂λ
l =

1
hλ

l

∫ 1

−1

(
1− x2

)λ−1/2
Cλ

l (x)u(x)dx (5)

Since we do not know the function u(x), implementing the GRP requires obtain-
ing an exponentially accurate approximation, ĝλ

l , to the first m coefficients f̂λ
l in

the Gegenbauer expansion from the first N +1 Chebyshev coefficients of u(x). The
approximate Gegenbauer coefficients are defined as the integral

ĝλ
l =

1
hλ

l

∫ 1

−1

(
1− x2

)λ−1/2
Cλ

l (x)uN (x)dx (6)

where uN is the Chebyshev partial sum (1). The integral should be evaluated by
Gauss-Lobatto quadrature in order to insure sufficient accuracy. The coefficients ĝλ

l

are now used in the Gegenbauer partial sum to approximate the original function
as

u(x) ≈ uλ
m(x) =

m∑

l=0

ĝλ
l Cλ

l (x)

In practice, there will be discontinuities in the interval [−1, 1] and the recon-
struction must be done on each subinterval [a, b] in which the solution remains
smooth. To accomplish the reconstruction on each subinterval, define a local vari-
able for each subinterval as x(ξ) = εξ + δ where ε = (b − a)/2, δ = (b + a)/2 and
ξj = cos(πj/N). The reconstruction in each subinterval is then accomplished by

uλ,ε
m (εξ + δ) =

m∑

l=0

ĝλ
ε (l)Cλ

l (ξ)

where

ĝλ
ε (l) =

1
hλ

l

∫ −1

1

(1− ξ2)λ−1/2Cλ
l (ξ)uN (εξ + δ)dξ.

Notice that we have used collocation points on the entire interval [−1, 1] to build
the approximation in [a, b]. This is referred to as a global-local approach [Gottlieb
and Shu 1995b]. The global-local approach seems to be best when postprocessing
PDE solutions where uN is obtained from the time evolution of the problem . The
point values u(xi) may not be accurate, but the global interpolating polynomial
uN (x) is accurate.

In order to show that the GRP yields uniform exponential accuracy for the ap-
proximation, it is necessary to select λ and m such that λ = m = βεN , where
β < 2e/(27(1 + 1/2p)), and p is the distance from [−1, 1] to the nearest singularity
in the complex plane, in each subinterval where the function being reconstructed
is assumed to be analytic [Gottlieb and Shu 1997]. The choice of λ = m is neces-
sary to make the proof work for the exponential convergence of the method, but
in practice it is not necessary and usually not advisable to choose λ = m. We are
often more concerned with obtaining results for a fixed N , rather than maintaining
an exponential convergence rate.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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If the function to be postprocessed consists of homogeneous features, the recon-
struction parameters can be successfully chosen as λ = kλεN and m = kmεN for
each subinterval where kλ and km are user chosen, globally applied parameters. We
refer to this strategy as the global approach. However, in problems with solutions
containing varying detail throughout the computational domain, the reconstruction
parameters may need to be chosen independently in each subinterval [Sarra 2002].
We refer to this strategy as the local approach. To date there is no known method to
choose optimal values of the reconstruction parameters m and λ. The parameters
remain very problem dependent.

4.1 Computational Expense

At first examination, the GRP seems to require a triple summation for each grid
point value of a function that is reconstructed. The method can be very computa-
tionally expensive as N and m grow. However, the use of the Christoffel-Darboux
[Davis 1975] formula allows one of the sums to be eliminated [Gelb 2000]. The
summation of the Chebyshev series can be done in an efficient manner with Clen-
shaw’s recurrence formula [Clenshaw 1962]. These two modifications result in a
much more efficient method and are implemented in the software.

4.2 Round-off Error

The Gegenbauer polynomials grow very rapidly with λ and m which leads to a
round-off error that may completely ruin the approximation. Round-off error is
especially problematic for functions with a lot of variation and that require large
values of m and/or λ. While the use of the Christoffel-Darboux formula reduces the
computational effort, it adds to the round-off error problem as now two Gegenbauer
polynomials are multiplied together. To lessen this problem Gelb [Gelb 2000] has
suggested that the computation be rearranged in a way such that the two large
and increasing Gegenbauer polynomial terms are first multiplied by quantities that
are small and decreasing with respect to m, λ, and N . This rearrangement of the
computation leads to a much more robust method and has been implemented in
the software.

4.3 A Hybrid Approach

Even with the computational savings made via the Christoffel-Darboux formula,
Gegenbauer Reconstruction may still be very computationally expensive in higher
dimensions for large values of N . A hybrid approach was suggested in [Gelb 2000]
which uses an exponential filter, which may be applied very cheaply, in smooth
regions and the GRP in the neighborhood of discontinuities. The exponential filter
is

σ(
k

N
) = exp(−α| k

N
|β), (7)

where α is the strength of the filter and β is the order of the filter. The exponential
filter is an example of a spectral filter [Vandeven 1991] and can be used to recover a
high order of accuracy away from points of discontinuity. The filtered partial sum
takes the form
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uN (x) =
N∑

n=0

σ(
n

N
)anTn(x)

Spectral filters do not completely remove the Gibbs-Wilbraham phenomenon, as
oscillations in the neighborhood of discontinuities will not be removed.

The hybrid Gegenbauer postprocessing method is implemented for one-dimensional
functions in the method hybrid.postProcess().

5. SOFTWARE

Source code for the Spectral Signal Processing suite, a demonstration Applet con-
taining all examples in this paper, and documentation of the graphical user interface
(GUI) may be found at www.scottsarra.org/signal/signal.html.

5.1 Supported Collocation Grids

The standard collocation points for a Chebyshev Collocation method are usually
defined by

xj = −cos(
πj

N
), j = 0, 1, ..., N. (8)

These points are extrema of the kth order Chebyshev polynomial Tk(x) (3). The
points are often labelled the Chebyshev-Gauss-Lobatto (CGL) points, a name which
alludes to the points role in certain quadrature formulas. The CGL points cluster
quadratically around the endpoints and are less densely distributed in the interior
of the domain. The CGL grid is denoted as grid 0 in the software. In practical ap-
plication of Chebyshev Collocation methods for PDEs, a change of variable is often
used to redistribute the collocation points. Three coordinate maps are supported
by the software and are used in the examples.

The first map (grid 1 in the software) is the Kosloff/Tal-Ezer map [Kosloff and
Tal-Ezer 1993]

x = g(ξ, γ) =
arcsin(γξ)
arcsin(γ)

, (9)

with γ ∈ (0, 1). As γ approaches one, the grid points become nearly evenly spaced
and as γ approaches zero, the CGL grid is approached. The mapping also relaxes
the O(N−2) time-stepping restriction that is present when advancing Chebyshev
methods with explicit time-stepping algorithms using the CGL grid.

The second map (grid 2) [Basdevant et al. 1986] is

x = g(ξ, γ) = (1.0− γ)ξ3 + γξ, (10)

with γ ∈ (0, 1). Smaller values of γ cluster grid points around the center of the
computational interval while still maintaining a dense grid point distribution near
boundary points. As γ → 1 the grid approaches the CGL grid. The map can be
used to resolve regions of rapid variation in the center of a computational domain.

The two parameter tangent map (grid 3) [Bayliss and Turkel 1992] is

x = g(ξ, γ, µ) = x0 +
tan(δξ + ω)

γ
(11)
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where κ = arctan(γ(1− µ)), γ = arctan(γ(1 + µ)), δ = 0.5(κ + γ), ω = 0.5(κ− γ),
and x0 = −1 + 2(µ − a)/(b − a). The map can be used to resolve solutions with
either a region of rapid variation in the interior or at boundaries. The map can be
used to cluster grid points around the point µ in the interval [a, b]. The parameter
γ > 0 determines the degree to which the clustering takes place.

5.2 Summary of Signal Processing Classes

Two classes implement versions of the edge detection procedure. Both classes have
one public method, findEdges. The findEdges method in class edgeDetect locates
edges in a function on its entire domain. The method takes input: f, an array of
function values, and edge detection parameters, J , Q, and η. The method outputs
an array containing the edge series, ue, and nonlinear enhancement, nle. The
location of the edges are returned in the Vector d. The Vector of edges can be used
as input to the postprocessing methods.

edgeDetect.findEdges(double[] f, double J, int Q,
double[] ue, double[] nle, Vector d, int eta)

The findEdges method in class edgeDetectAB is used to find edges in the derivative
of a function in the interval [A,B]. The method is identical to the findEdges method
in class edgeDetect except that it requires as additional input the endpoints of the
interval searched as well as an array, xm, containing the grid on which the function
f is known.

edgeDetectAB.findEdges(double[] f, double J, int Q, double[] ue,
double[] nle, Vector d, int eta, double A, double B, double[] xm)

Two versions of the Gegenbauer reconstruction procedure are implemented. Both
classes implement one public method, postProcess. The postProcess method in class
gegenbauerReconstruction implements the procedure by using global reconstruction
parameters, LK and MK which are input into the method. The method also takes
as inputs: an array of function values, f , and a vector d, containing the location of
the edges. As output, the method returns an array, fG, containing the values of
the postprocessed function. The methods also returns Vectors mv and Lv, which
contain the value of the reconstruction parameters, m and λ in each smooth sub-
interval. The vectors mv and Lv are used as input to the postProcess method of
class gegenbauerReconstructionB.

gegenbauerReconstruction.postProcess(double f[], double d[],
double LK, double MK, double fG[], Vector mv, Vector Lv)

The postProcess method of class gegenbauerReconstructionB implements the local
approach to specifying reconstruction parameters.

gegenbauerReconstructionB.postProcess(double f[], double d[],
double fG[], Vector mv, Vector Lv)

The methods takes as inputs: an array of function values, f , and a vector d,
containing the location of the edges. Additionally, Vectors mv and Lv specifying
the reconstruction parameters, m and λ, in each smooth subinterval need to be
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input. The method returns the array fG containing the postprocessed function
values.

The classes hybrid and hybridB implement postProcess methods similar to those
of gegenbauerReconstruction and gegenbauerReconstructionB except that an ex-
ponential filter may be used to postprocess the input function in neighborhoods
away from the edge locations. The methods in both classes take additional in-
puts, alpha and gamma, which respectively determine the strength and order of
the exponential filter (7). The postProcess method of class hybrid also takes as an
input the parameter EPS which specifies that the GRP is to be applied in intervals
(d[j]− EPS, d[j] + EPS) around each edge d[j].

hybrid.postProcess(double f[], double d[], double LK,
double MK, double fG[], Vector mv, Vector Lv, double alpha,
double gamma, double EPS)

The postProcess method of class hybridB allows different reconstruction parame-
ters to be applied in each smooth subinterval through the input Vectors mv and Lv,
in the same way that gegenbauerReconstructionB.postProcess does. Additionally,
the value of EPS around each edge may be specified separately by values input in
the Vector ev.

hybridB.postProcess(double f[], double d[], double fG[],
Vector mv, Vector Lv, Vector ev, double alpha, double gamma)

6. EXAMPLES

The example functions are included as part of the software package and are avail-
able from the examples menu in the GUI. The first four examples use the software
suite to reconstruct functions approximated by a Chebyshev partial sum (1). The
examples use two parameters, Nex, which sets the number of terms in the partial
sum (1) to Nex+1, and M , which has various meanings depending on the example.
The two parameters may be set through the GUI. The remaining examples demon-
strate using the software as a postprocessing method for the Chebyshev Collocation
method and Chebyshev SSV method. All PDE example problems can be stated as
a system conservation laws with a source term as

ut + f(u)x = ψ(u). (12)

6.1 Step Function

The first example consists of the step function on [−1, 1] defined as f(x) = −1
if x 6 0 and f(x) = 1 if x > 0. The approximation of the step function by a
Chebyshev series is shown in figure 1.

With Nex = 60 and on the CGL grid (grid=0), the edge at x = 0, which has a
jump of magnitude 2, can be located with J = 10, Q = 1, and η = 2. This choice
of edge detection parameters results in jumps of J1/Q

√
1/N ≈ 0.9 and larger being

located. In this case, we just need J1/Q
√

1/N > 0.85 to locate the correct edge
location.

The function has a homogeneous structure throughout its domain, which indi-
cates that the reconstruction parameters can be chosen globally. The reconstruction
parameters can be specified by setting kλ = 0.1 and km = 0.025 which results in
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Fig. 1. step function approximation

m = 1 and L = 3 in each smooth subinterval. A slightly better result (check the
error from the options menu) can be obtained with kλ = 0.5 and km = 0.025 which
results in m = 1 and L = 15 in each smooth subinterval.

6.2 Sine wave

The function f(x) = Sin(Mπx) will test the resolution properties of the Gegen-
bauer expansion. This smooth function contains M complete wavelengths in the
interval [−1, 1]. It was shown in [Gottlieb and Shu 1994] that the Gegenbauer
expansions needs a minimum of π points per wavelength to completely resolve a
wave.

Choose Nex = 350, use the CGL grid (grid=0), and set M = 20. The function is
smooth so there are no edges in the interval. If the global Gegenbauer parameters
are set by specifying kλ = 0.003 and km = 0.25 (which results in m = 88 and
L = 1.05), the functions is well resolved.

6.3 Combination

The previous two examples demonstrate that if the function has homogeneous struc-
ture throughout its domain, then the reconstruction parameters can be chosen
globally. However, if the function consists of subintervals of varying detail, a lo-
cal approach to choosing the reconstruction parameters may be necessary. For
example, consider function (13). Experimentally, we were unable to chose the re-
construction parameters globally and obtain good results. Instead, a local approach
seems necessary, where independent values of m and λ are specified separately in
each smooth subinterval.

For example, take Nex = 400, grid = 0, and M = 0.015 to specify the width of
the feature in the interval [0, 1]. The edges can be located with J = 20, Q = 1,
and η = 2. In the regions where the function is piecewise constant, reconstruction
parameters of λ = 2 and m = 2 provide good results. In the region [−1,−0.68],
the function is of moderate detail, and reconstruction can be accomplished with
moderate values of m = 9 and λ = 9. In the interval [0, 1], which consists of a
narrow exponential spike, the function contains small scale structures which will
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require a large value of m, and small value of λ, similar to those in the Sine wave
example, e.g., λ = 0.1 and m = 70.

f(x) =





3 exp(−(x−0.5)2

4M2 if 0 6 x 6 1,
3 if −0.4 6 x < 0,
0.5 if −0.68 6 x < −0.4,
1.5 + 1.5 exp(20(x− 0.68)) if −1 6 x < −0.64

(13)
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Fig. 2. Chebyshev Approx. of function (13)

6.4 Center Step

Theoretical proofs [Gottlieb and Shu 1995b] exist showing exponential convergence
properties of the GRP for functions known on the CGL grid. Numerical evidence
indicates that method may also be applied on grids arising from mappings of the
Chebyshev grid. The determining factor in the accuracy of the reconstruction is
how well the chosen grid can capture the function [Sarra 2002].

For example, consider the piecewise analytic function (14). Set Nex = 160,
M = 0.15, and form the grid with the map (9) with γ = 0.9999. The grid is
nearly evenly spaced. The Chebyshev approximation of the function is shown in
figure 14. The global Gegenbauer parameters can be set by specifying kλ = 0.2 and
km = 0.025 to achieve a successful reconstruction of the function on the mapped
grid.

f(x) =
{

0 if x 6 M − 1 or x > 1−M,
1 otherwise. (14)

6.5 Hyperbolic Heat Transfer

Our first example of using the GRP as a postprocessing method for Chebyshev
Collocations method for PDEs is to the equations of hyperbolic heat transfer. The
governing equations of hyperbolic heat transfer can be written in form (12) with
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 3. Chebyshev Approx. of function (14)

u = [T, Q]T , f(u) = [Q,T ]T , ψ = [S/2,−2Q]T . T (x, t) is the temperature, Q(x, t)
is the heat flux, and S(x, t) is the energy generation rate. Both examples used
the initial conditions T (x, 0) = 0 and Q(x, t) = 0 on [0, 1]. The problem is linear
and the Chebyshev Collocation method is stable without the additional of any
spectral viscosity. The system was advanced in time with a fourth order explicit
Runge-Kutta method. More detailed information about the spectral solution of
this problem may be found in [Sarra 2003b].

For the first hyperbolic heat transfer example, the system (12) is solved with
boundary conditions of Q(0, t) = 1, Q(1, t) = 0, Tt(0, t) = −Qx(0, t), and Tx(1, t) =
0. The energy generation rate, S, set to zero.
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Fig. 4. numerical (solid) vs. exact

In the figure 4, the temperature solution, T , is shown at time t = 0.5 with N = 33
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on the CGL grid (8). Strong oscillations are noticeable at the boundary x = 0, due
to the jump in the heat flux, Q ,which is felt by the temperature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

Fig. 5. edge series (solid) and enhancement

An edge is found to be at x = 0.476 with the parameters J = 200, Q = 4, and
η = 2. This choice of edge detection parameters results in jumps of 0.65 and larger
being located. The exact jump is 0.65 in magnitude. By specifying η = 2, the
oscillation near x = 0 is not falsely determined to be a jump in the function. With
only 33 grid points, the convergence of the edge series, figure 5, is not yet readily
apparent. However, if the edge detection parameters are chosen appropriately, the
correct edge locations will be found.

After the edges have been located, the GRP is applied in each smooth subinterval
with by using global parameters chosen as kλ = 0.3 and km = 0.1 which results
in m = 2 and λ = 4.7 in subinterval (0, 0.476) and m = 2 and λ = 5.2 in subin-
terval (0.476, 1). For the homogeneous solution in this example, choosing global
reconstruction parameters results in a successful application of the GRP.

For the second hyperbolic heat transfer example, the system (12) is solved with
solved with boundary conditions of Q(0, t) = 0, Q(1, t) = 0, Tx(0, t) = 0, and
Tx(1, t) = 0. The energy generation rate is specified as S(x, t) = 1

dn , if 0 ≤ x ≤ dn,
and zero otherwise. The energy generation rate, S, represents a pulsed energy
source released instantaneously at time t = 0.

The temperature solution, (figure 7), with dn = 0.05 is shown at time t = 0.5
with N = 99 collocation points distributed with the map (9) with γ = 0.96. By
taking the map parameter as γ = 0.96, the grid becomes closer to evenly spaced
and better resolution is realized in the center of the domain.

Edges (figure 8) are found to be at x = 0.447 and x = 0.541 with the parameters
J = 5000, Q = 3, and NE = 1. With these choices of the edge detection parame-
ters, only jumps of magnitude greater than 1.72 are found. Other combinations of
J and Q could work equally as well.
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Fig. 6. postprocessed (solid) vs. exact
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Fig. 7. numerical (solid) and exact (dashed)

After the edges have been located, the GRP is applied in each smooth subinterval
by using the global parameters kλ = 0.2 and km = 0.02. The results are shown in
figure 9.

6.6 Shallow Water Equations

Cast in the form (12), the Shallow Water Equations are u = [v, h]T , f(u) = [v2h +
0.5gh2, vh]T , and ψ(u) = 0. The variable h(x, t) is the height of the free upper
surface, v(x, t) is the depth averaged fluid velocity, and g is the acceleration due to
gravity.
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Fig. 8. enhancement (solid) and edge series
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Fig. 9. postprocessed (solid) and exact

Our example is the dam break problem consisting of an initial condition of
h(x, 0) = h0 if x < 0, h(x, 0) = h1 if x > 0, and v(x, 0) = 0. The solution
consists of a right moving shock and a left moving rarefaction. The Chebyshev
SSV solution (figure 10) was calculated with N = 128 on a grid formed with map
(9) with γ = 0.99. The system was advanced in time with a fourth order explicit
Runge-Kutta method.

The edge detection procedure finds edges in the first derivative of the height
solution in the interval [−1, 0] at x = −0.475 and x = −0.374 with J = 70, Q = 2,
and η = 1. A shock is found in the solution at x = 0.458 with J = 1, Q = 1, and
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Fig. 10. SSV solution, h(x,t)

η = 1.
The homogeneous features of the solution allow the reconstruction parameters

to be chosen globally through the parameters kλ = 0.6 and km = 0.15. The
postprocessed solution is shown in figure (figure 11).
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Fig. 11. postprocessed, h(x,t)

An exact solutions to the problem exists. However, for convenience, the refer-
ence solution in the software was computed with the second order Nessayhu-Tadmor
scheme [Nessyahu and Tadmor 1990] on a very fine grid (N = 4000) and interpo-
lated with third order accuracy to the spectral grid.
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6.7 Fluidized Bed Equations

Fluidized beds are used in the chemical and fossil fuel processing industries to mix
particulate solids and fluids (gases or liquids). A typical fluidized bed consists of a
vertically oriented chamber, a bed of particulate solids, and a fluid flow distributor
at the bottom the chamber. The fluid flows upward through the particles creating
a force that counteracts gravity at which time a state of minimum fluidization
is reached. Stronger gas inflows (more than is necessary to maintain minimum
fluidization) lead to pockets of gas, or equivalently low particle concentrations,
resembling bubbles in a liquid travelling upward through the particles. Each rising
bubble pushes a large amount of mass in front of it. Particles move downward
through and around the rising bubble until it reaches the top of the bed. A settled
bed is reestablished, and the cycle repeats. Each set of upward moving particles is
referred to as a slug.

A model that represents a one dimensional simplification of two and three di-
mensional fluidized bed models can be cast in the form on a nonlinear system of
conservation laws in form (12) with u = [α, m]T and f(u) = [m,m2/α + F (α)]T .
The variable α(x, t) denotes the concentration of particles by volume, m(x, t) = αv
represents the particle momentum, and v(x, t) the particle velocity.

A more detailed description of the model can be found in references [Christie et al.
1991] and [Christie and Palencia 1991]. If the source term is neglected, an exact
solution to the Riemann problem for the homogeneous system can be found. The
exact solution is developed in [Christie and Palencia 1991]. A detailed description
of the Chebyshev SSV solution of the model may be found in [Sarra 2003a] and
[Sarra 2002].

The appearance of the slugging behavior in the solution will create a solution
with nonhomogeneous structure and detail throughout the domain of the problem.
A local approach to specifying the reconstruction parameters will be needed.

6.7.1 Homogeneous System, shock-rarefaction. In our first example using the
fluidized bed equations, we consider the Riemann problem for the homogeneous
system for which an exact solution exists. This example consist of a left mov-
ing shock and a right moving rarefaction wave. The initial conditions consist of
α(x, 0) = 0.3 if x < 0 and α(x, 0) = 0.55 if x ≥ 0. The initial velocity is v(x, 0) = 0
for all x. The computation is done on a domain of [−0.2, 0.2]. Figure 12 shows the
SSV solution at t = 0.5. The grid consists of 64 points distributed by map (10)
with γ = 0.25. The use of the coordinate map has the effect placing more points
in the center of the domain. The system was advanced in time with a fourth order
explicit Runge-Kutta method.

The rarefaction wave is characterized by the solution having a discontinuous first
derivative, thus edge detection must be applied to the first derivative of the solution
in addition to the solution itself. The edge detection procedure with Q = 1 and
J = 1 locates jumps of magnitude greater than 0.125. With these settings, the
edge detection procedure locates edges in the function and the first derivative of
the function at x = −0.0331, x = 0.0331, and x = 0.1374.

We were unable to get good postprocessed results by specifying the reconstruc-
tion parameters globally through the parameters kλ and km. Global parameter
specification failed due to the solution containing three intervals of piecewise con-
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Fig. 12. α(x, t = 0.5), SSV approximation (oscillatory) vs. exact

subinterval m λ

(-0.2,-0.033) 1 2
(-0.033,0.033) 1 3
(0.033,0.1374) 4 1
(0.1374,0.2) 1 2

Table I. local reconstruction parameters

stant values and a fourth interval, (0.033, 0.1374), consisting of a function requiring
different reconstruction parameters. Good results were obtained by specifying the
GRP parameters locally in each smooth subinterval as listed in table I. The post-
processed solution is shown in figure 13.

6.7.2 Slugging Problem. The initial conditions were taken as the state of mini-
mum fluidization which is the state of the system at the minimum gas flow necessary
for the particle phase to be balanced by the upward force of the gas flow. Details
of the exact determination of minimum fluidization for this problem may be found
in [Sarra 2003a]. The non-homogeneous system was advanced in time with Strang
splitting [Strang 1968] and a second order explicit Runge-Kutta method.

The SSV solution of the slugging problem is examined at t = 0.5, when the
slugging behavior is first becoming apparent. The collocation grid consisted of 256
CGL (8) grid points. The edge detection procedure, figure 15, with J = 1, Q = 1,
and η = 2 located shocks at x = 0.01778 and x = 0.19822. The postprocessed
solution, figure 14, was obtained by locally specifying the reconstruction parameters
in each smooth subinterval as listed in table II.

An exact solution to the problem in not known. The reference solution included
in the software was computed by Roe’s method [Roe 1981] with N = 1024 and
interpolated with third order accuracy to the spectral grid. In figure 16, the Roe’s
method solution is shown with the postprocessed spectral solution from figure 14.
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Fig. 13. postprocessed (solid) vs. exact (dashed)
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Fig. 14. SSV (solid) vs. postprocessed, t=0.5

subinterval m λ

(0,0.01778) 15 2
(0.01778,0.19822) 14 4

(0.19822,0.25) 1 1

Table II. local reconstruction parameters

There is a good agreement between the two solutions. The slight variation in the
two solution is largely due to the fact that Roe’s method is calculated on a uniform
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Fig. 15. edge series and enhancement(solid)
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Fig. 16. postprocessed vs. reference (dashed), t=0.5

grid while the spectral method uses a nonuniform grid, which led to the initial
conditions being slightly different. The solution of the system is very dependent on
the initial conditions. The slightest variation of the initial conditions results in a
noticeably different concentration profile at later times. A more detailed description
of applying the GRP to this problem can be found in [Sarra 2003a] and [Sarra 2002].

7. CONCLUDING COMMENTS

In this paper, Version 1.0 of the Spectral Signal Processing Suite was described.
In the current version methods are available to locate edges in and to postprocess
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Chebyshev approximations of discontinuous functions. The algorithms have been
implemented using the most efficient known methods, as a straight forward imple-
mentation of the GRP algorithm is extremely costly. Additionally, steps have been
taken to reduce round-off errors which plague the GRP algorithm.

Work is underway on version 2.0 of the SSPS. Version 2.0 will implement edge
detection, the GRP, Spectral Mollification, Spectral Filtering, and Padé-based al-
gorithms for both Chebyshev and Fourier approximations. SSPS 2.0 will contain
a large number of the known methods that may be used to remove or reduce the
Gibbs-Wilbraham phenomenon in spectral approximations of discontinuous func-
tions. The package will allow the user to compare both the results and the efficiency
of the various methods.
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