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Abstract

Radial Basis Function (RBF) methods are important tools for scat-
tered data interpolation and for the solution of PDEs in complexly shaped
domains. Several approaches for the evaluation of RBF methods are
known. To date, the most noteworthy methods are solving a linear sys-
tem in the standard RBF basis using both double and extended precision
floating point arithmetic and two approaches that make a change of basis
for the purpose of obtaining a better conditioned linear system. In this
work the approaches are compared and contrasted for the purpose of il-
lustrating the strengths and weakness of each method as well as to give
insight into the application of each approach.

1 Introduction

Radial Basis Function (RBF) methods are important tools for scattered data
interpolation and for the solution of PDEs in complexly shaped domains. The
most straight forward approach to evaluate the method uses the “standard basis
functions” and involves solving a linear system which is typically poorly con-
ditioned. Two variations of a method, dubbed the RBF-QR approach, use a
different basis that spans the same space as the standard basis but results in a
better conditioned linear system.

Extended precision floating point arithmetic can be used to accurately eval-
uate the ill-conditioned problem in the standard basis. This approach has been
used and implemented in several different software environments that include:
Mathematica [11], the Matlab Symbolic Toolbox [25], C++ [21], and Fortran
[7]. The extended precision approach is attractive because it retains one of the
great strengths of the RBF method which is simplicity. Whereas the RBF-QR
methods, as can be ascertained by browsing the software that implements the
methods, are far more complex.
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Software packages that implement each of the methods are freely available
and include: standard basis with double and extended precision ([23] and [20]),
Mercer alternative basis method [14], and a RBF-QR alternative basis method
[13].

2 The RBF Method

RBF interpolation uses a set of N distinct points X = {xc
1, . . . , x

c
N} in Rd called

centers. No restrictions are placed on the shape of problem domains or on the
location of the centers. A RBF

φk(x) = φ(‖x− xc
k‖2 , ε), x, xc

k ∈ Rd (1)

is an infinitely differentiable (compactly supported and global RBFs without a
shape parameter and with less smoothness exist but are not considered here)
function of one variable r = ‖x− xc

k‖2 that is centered at xc
k and that contains

a free parameter ε called the shape parameter. The RBF interpolant assumes
the form

INf(x) =
N
∑

k=1

akφk (‖x− xc
k‖2 , εk) (2)

where a is a vector of expansion coefficients. The Gaussian (GA) RBF

φ(r) = e−ε2r2 (3)

is used throughout and is a representative member of the class of global, in-
finitely differently RBFs containing a shape parameter that interpolate with
exponential accuracy. The reason for the restriction to the GA RBF is that
both alternative basis algorithms work with this RBF. The expansion coeffi-
cients are determined by enforcing the interpolation conditions

INf(xc
k) = f(xc

k), k = 1, 2, . . . , N (4)

which result in a N ×N linear system

Ba = f. (5)

The matrix B with entries

bjk = φ(
∥

∥xc
j − xc

k

∥

∥

2
, εk), j, k = 1, . . . , N (6)

is called the system matrix. The evaluation of the interpolant (2) at M points
xj is accomplished by multiplying the expansion coefficients by the M × N
evaluation matrix H that has entries entries

hjk = φk(‖xj − xc
k‖2 , εk), j = 1, . . . ,M and k = 1, . . . , N. (7)
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Derivatives are approximated by differentiating the RBF interpolant as

D (INf(x)) =
N
∑

k=1

akDφk (‖x− xc
k‖2 , εk) (8)

where D is a linear differential operator. The operator D may be a single dif-
ferential operator or a linear differential operator such as the Laplacian. Eval-
uating (8) at the centers X can be accomplished by multiplying the expansion
coefficients by the evaluation matrix HD with entries

hjk = Dφ(
∥

∥xc
j − xc

k

∥

∥

2
, εk), j, k = 1, . . . , N. (9)

That is, Df ≈ HDa. Alternatively, derivatives can be approximated by multi-
plying the grid function values {f(xc

k)}
N
k=1 by the differentiation matrix D =

HDB
−1 since

Df ≈ HDa = HD(B
−1f) = (HDB

−1)f. (10)

The shape parameter εk may take on different values at each center xc
k. Such

an approach is called a variable shape parameter strategy. Several variable
shape strategies [12, 26] have been suggested and present some advantages.
A drawback of variable shape parameter strategies is that they cause the RBF
systemmatrix to be non-symmetric. A constant shape has been used throughout
since the alternative basis algorithms are not applicable with variable shape
parameters.

shape parameter
1 2 3 4 5 6
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with MDI

shape parameter
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10 14
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10 20
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Figure 1: 1d interpolation, method D. Left: error versus the shape parameter
with and without MDI regularization. Right: system matrix condition number
versus the shape parameter with and without regularization.

Both equations (5) for the expansion coefficients and (10) for the differen-
tiation matrix assume that the system matrix is invertible. The GA system
matrix is symmetric positive definite (SPD) and therefore invertible. While it is
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invertible, the system matrix is typically very poorly conditioned in the standard
basis. The eigenvalues of B satisfy 0 < λmin = λ1 ≤ λ2 ≤ · · · ≤ λN = λmax

and the matrix condition number in the 2-norm is κ(B) = λmax/λmin.
For a fixed set of centers and with the standard basis functions, the shape

parameter affects both the accuracy of the method and the conditioning of
the system matrix. The RBF method is most accurate for smaller values of
the shape parameter where the system matrix is ill-conditioned. The attainable
error and the condition number of the system matrix cannot both be kept small.
This relationship has been dubbed the uncertainty principle [27]. Approaches
which attempt to find a better conditioned basis that spans the same space will
be examined in sections which follow.

In order to mitigate the inherent ill-conditioning of the standard basis, a
regularization technique was shown to be effective in [22]. Instead of solving the
system (5) the regularized system

(B + µI)y = f (11)

is solved. The regularization parameter µ is a small positive constant and I is
the identity matrix. The technique is called the method of diagonal increments
(MDI) and its first use dates back to the 1940’s [18]. The matrix B + µI is
better conditioned than B as

κ(B + µI) =
λmax + µ

λmin + µ
< κ(B) =

λmax

λmin
.

For small µ, (B+µI)−1 is close to B−1 and MDI simply replacesB with (B+µI)
in computing the solution of a system. Equation

B−1 − (B + µI)−1 = µ2B−1(I +B−1/µ)B (12)

quantifies how close that (B + µI)−1 and B−1 are [9, 10]. For very small µ the
difference is negligible.

Recent monographs [3, 5, 25, 29] on RBF methods can be consulted for more
information.

3 Evaluation Methods

The names of the evaluation methods can be quite lengthy. For simplicity and
brevity the following abbreviations are used: method D - the standard RBF
method as described in section 2 implemented in IEEE 64-bit double precision
with regularization by the method of diagonal increments [22]; method X - the
standard RBF method as described in section 2 implemented in IEEE 128-bit
quadruple precision with regularization by the method of diagonal increments;
method X (p) - the same as method X except that the floating point systems
uses numbers with p > 34 decimal places of precision; methodQ - the alternative
basis method dubbed the RBF-QR method and described in reference [7]; M -
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the alternative basis method described in reference [4] that is based on a Mercer
expansion of the basis functions.

In order to demonstrate features of the methods, the following 1d interpola-
tion problem is used as the methods are described in the next four subsections.
The function f(x) = esin(πx) on the domain [−1, 1] is interpolated using N = 44
centers and M = 175 evenly spaced evaluation points. Two sets of centers
are used, uniformily spaced and the Chebyshev-Gauss-Lobatto (CGL) points
xk = cos (kπ/(N − 1)), k = 0, 1, . . . , N − 1 that cluster around the boundary
points.

3.1 Method D

MethodD is the standard, most basic approach, for evaluating the RBF method.
The linear system (5) is solved using algorithms implemented in double precision
floating point arithmetic as specified by IEEE 754-2008 standard [16]. Double
precision is efficiently implemented in hardware in nearly every computer man-
ufactured worldwide. The approach can be efficiently regularized via MDI as
described in section 2.

In the right image of figure 1 the condition number of the system matrix is
shown to increase with decreasing shape parameter. Once the exact condition
number is larger than O

(

1016
)

it can not be accurately calculated in double

precision and the calculated condition numbers oscillate in the O
(

1018
)

range.
Coinciding with the inability to accurately calculate condition numbers the er-
ror curve, while still decreasing, begins to oscillate. In this example both begin
to occur as the shape parameter decreases to approximately ε = 5.25. MDI reg-
ularization keeps the condition number of the system being solved at or below
O
(

1016
)

and prevents the error curve from oscillating as the shape parameter
decreases. In this example the regularized solution is about one decimal place
more accurate than the un-regularized solution in the small shape parameter
range. In many cases the regularized solution is accurate to several more dec-
imal places [22]. The 16 in the exponent of the condition number bound for
MDI coincides with approximately 16 decimal places in which a number can be
represented in double precision. A regularization parameter of µ = 5εM is used
where machine epsilon in double precision is εM ≈ 2.2e-16.
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3.2 Method X

shape parameter
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Figure 2: 1d interpolation, method X with CGL centers. Left: method X
and X (200) error versus the shape parameter with MDI regularization. Right:
system matrix condition number using 34 digits (quadruple precision) versus
the shape parameter with and without regularization.

Method X refers to the standard basis RBF method implemented in IEEE 754-
2008 standard [16] 128 bit quadruple floating point arithmetic. In quadruple
precision, a number can be represented accurately to approximately 34 decimal
places. Method X (p) represents the method implemented in a floating point
number system with p decimal digits of precision. Unlike the double type, which
is implemented efficiently in specialized hardware registers, there are currently
no general purpose processors that implement quadruple precision so it must
be implemented in software and suffer a performance penalty. More accurate,
arbitrary precision floating point number systems with p decimal digits of pre-
cision can be implemented in software as well, but generally not as efficiently
as the quadruple type. The Matlab Radial Basis Function Toolbox (MRBFT)
[23] that implements methods X and X (p) uses the Multiprecision Computing
Toolbox (MCT) for MATLAB [2] to provide extended precision. In benchmarks,
the MCT has been shown to be much more efficient in implementing extended
precision than other available options. Changing the precision of the floating
point number system is simply done via the one line

mp.Digits(p);

where p is the desired precision and where p = 34 corresponds to the quadruple
type.

The left image of figure 2 shows the accuracy versus the shape parameter of
the MDI regularized X and X (200) methods. The MDI regularization parame-
ter in each method is taken as µ = 10εM where εM ≈ 1.9e-34 for method X and
εM ≈1.3e-200 for method X (200). Increasing the precision beyond 200 does not
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increase the accuracy. The right image of figure 2 shows the condition number
of the method X system matrix with and without regularization. The goal of
regularization in method X is for the condition number to remain O

(

1034
)

and

for method X (200) to remain O
(

10200
)

. Method X takes approximately 37
times longer to execute than method D and method X (200) takes about 11
times as long as method X.

3.3 Alternative basis

The search for an alternative basis is motivated by the fact that the standard
basis is not a good choice for small shape parameters. For small values of the
shape parameter, it is an ill-conditioned basis for a good approximation space.
Finding a better basis that spans the same space depends on being able to
expand the standard basis functions as

φk(x) =
∞
∑

ℓ=1

cℓ(xk) dℓ eℓ(x). (13)

The action of a linear operator L on the basis functions can then be calculated
as

Lφk(x) =
∞
∑

ℓ=1

cℓ(xk) dℓ Leℓ(x).

The infinite expansion is truncated at a finite M which allows the system
matrix in the standard basis to be approximately factorized as

B ≈ CDE (14)

where M ≥ N and P = M −N . The N ×M coefficient matrix C has elements
ckℓ = cℓ(xk), the M × M diagonal scaling matrix D has diagonal elements
dℓ, and the M ×N matrix E contains the expansion functions (in method M,
E = CT ) and has elements eℓk = eℓ(xk).

The value of M is determined by setting it equal to the smallest value of
ℓ ≥ N such that dℓ < ǫM where ǫM is machine epsilon (ǫM = 2−52 in IEEE
double precision). The elements of dℓ will decay rapidly with ℓ with small values
of the shape parameter but will decay slower for large values.

The purpose of the factorization is to remove the ill-conditioning from the
matrix B and isolate it in the diagonal matrix D which can then be safely
inverted by simply inverting the diagonal elements. The coefficient matrix C is
factorized via a QR factorization and written in block form as

C = QR = Q [R1 R2]

where Q is a N ×N orthogonal matrix, R is a N ×M upper triangular matrix,
R1 is N ×N and contains the first N rows of R, and R2 is N ×P and contains
the last P rows of R. The matrix R is divided into blocks in order to separate
the contributions of the coefficients from the first N basis functions from those
of the last P .

7



The new basis functions are then built with first a contribution from the
first N expansion functions

E1 = D−1
1 R−1

1 QTB.

where now E has been divided into a N ×N matrix E1 and a N ×P matrix E2

and D has been split into a N ×N diagonal matrix D1 and a P × P diagonal
matrix D2. The second contribution to the new basis functions comes from the
last P basis functions with expansion coefficients that are stored in a N × P
correction matrix

X = D−1
1 R−1

1 R2D2.

In the new basis, a system matrix, interpolation evaluation matrix, or derivative
evaluation matrix is formed as

Ψ = E1 + E2X
T

depending on if the expansion functions are used to fill E or if it is filled with
the expansion functions that have been acted upon by L. Unlike the GA system
matrix in the standard basis which is SPD and can be factorized with a Cholesky
factorization, the system matrix in the new basis is no longer positive definite
and it is not even symmetric. A LU factorization with twice as many flops must
be used.

The basis function expansion (13) is different in each space dimension. The
next sections discuss the alternative basis methods in 1d. The details of the
alternative basis algorithms in higher dimension are much more involved. The
original manuscripts can be consulted for details of the expansions in higher
dimensions. Section 4 gives multiple 2d examples.

3.3.1 Method Q

The elements of the diagonal scaling matrix

dℓ =
2ε2ℓ

ℓ!

of method Q are determined by the sizes of the eigenvalues of the system matrix
(6) in the standard basis. The expansion functions

eℓ(x) = e−ε2x2

cos(ℓ arccos(x))

are a product of Gaussian functions and Chebyshev polynomials. The expansion
coefficients are

cℓ(xk) = tℓ e
−ε2x2

k xℓ
k 0F1(ℓ + 1, ε4x2

k).

where t0 = 0.5 and tℓ = 1 for ℓ ≥ 1 and 0F1 is a hypergeometric function.
The left image of figure 3 displays the accuracy of method Q for 1d interpo-

lation over a range of shape parameter using both clustered and uniform centers.
With clustered centers, the method can interpolate the function to near machine
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Figure 3: 1d interpolation, method Q. Left: error versus the shape parameter.
Right: system matrix condition number versus the shape parameter.

precision for ε ≤ 2. In the right image of figure 3 the condition number of the
system matrix in the new basis is very small with clustered centers for ε ≤ 2.
A center distribution with a “good” clustering of centers near the boundary is
important for the success of method Q. In this example, the truncation param-
eter M ranges from 83 at the largest shape to 47 at the smallest shape for both
the CGL and uniform centers. In order to be more robust, it is necessary for
the QR factorization to incorporate pivoting [7]. The standard QR factorization
in most linear algebra packages such as Matlab does not use pivoting, however
the authors of the software have supplied a QR factorization with pivoting with
their software [13].

3.3.2 Method M

Method M is based on a Mercer expansion [15] of a positive definite kernel func-
tion, the Gaussian RBF (3). Mercer’s theorem allows the GA to be expanded
in an eigenvalue/eigenfunction expansion that fits into the framework of (13).
For the GA, both the eigenvalues and eigenfunctions are known in closed form
[19]. Let

β =

(

1 +

(

2ε

α

)2
)

1

4

and

δ2 =
α2

2

(

β2 − 1
)

.

Then the eigenvalues

dℓ =

√

α2

α2 + δ2 + ε2

(

ε2

α2 + δ2 + ε2

)ℓ−1
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are the diagonal elements of the scaling matrix and {dℓ}
∞

ℓ=1 is a non-increasing
sequence of positive numbers such that dℓ → 0 as ℓ → ∞. The eigenfunctions
are

eℓ(x) = e−δ2x2

Hℓ−1(αβx)

√

β

2ℓ−1Γ(ℓ)

where Hℓ−1 are degree ℓ − 1 Hermite polynomials. The expansion coefficients
are

cℓ(xk) = eℓ(xk).

Method M is applicable for basis functions, such as the GA and Matern
RBF, for which an eigen expansion is known in closed form. If the expansion
is not known in closed form, it is possible to approximate the eigenvalues and
eigenfunctions numerically [19]. However, while the larger eigenvalues can be
approximated very accurately, it is difficult if not impossible to approximate the
smallest eigenvalues using double precision. It is our experience that method M
can not be accurately implemented in double precision when the eigenvalues and
eigenfunctions are calculated numerically. Of course extended precision could
be used, but it would be simpler to work with method X and the standard RBF
basis in this case.

A formula does not exist for an optimal value of the parameter α. In selecting
a good value of α there are two conflicting goals. Small α leads to eigenfunctions
of relatively the same scale and large α maintains numerical orthogonality on
a finite domain. The software [14] has a function to automatically specify the
parameter α. It returns the smallest value of α for which the eigenfunctions
remain orthonormal within a tolerance. In general, the best value of alpha is
different for each value of the shape parameter.

In the top left image of figure 4 is the value of alpha that the software package
selects, which is based on orthogonality, plotted against the shape parameter.
The smallest value of alpha is 0.24 at ε = 6 and the largest value is 1.58 at
ε = 0.04. In the right image is the corresponding accuracy versus the shape
parameter. In this example, as well as all the examples that follow, the value
of alpha selected based on orthogonality did not even come close to producing
the most accurate results. In this example using α = 6 at every value of the
shape parameter produced good results (bottom left image of figure 4). We
found no good way to find this value other than trial and error. As expected,
method M is both more accurate and better conditioned when the centers are
clustered near the boundary. However, later examples will show that method M
is less sensitive to how the clustering is done than is method Q. The truncation
parameter M ranges from 113 for the largest shape to 49 for the smallest shape
in the run in the bottom left figure.

In higher dimensions a tensor product formulation of the 1d expansion is
used. This approach can be computationally expensive even for small ε and
moderate N and M. A low-rank approximation of the full RBF interpolant
using M < N eigenfunctions is explored in [4]. In this work, due to limited
space, only the full RBF interpolant is considered. More detailed information
on method M can be found in the recent monograph [6].
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Figure 4: Top: 1d interpolation with CGL centers, method M with the param-
eter α selected based on othogonality of eigenfunctions. Left: value of α versus
the shape. Right: error versus the shape parameter. Bottom: 1d interpolation
with CGL centers and α = 6. Left: error versus the shape parameter. Right:
system matrix condition number versus the shape parameter.

3.3.3 Summary 1d Example

Figure 5 shows the accuracy versus the shape parameter for all four approaches.
On a CGL center distribution, methods M and Q produce errors close to ma-
chine epsilon with small values of the shape parameter. While method Q per-
forms well for small N , it returns NaN (not a number) for N ≥ 172 CGL centers.
The best accuracy is obtained by method X at a shape parameter that is larger
than those in the shape region where methods M and Q are most effective. In
the small shape parameter region where methods M and Q are most accurate
their accuracy can be matched by methodX if the decimal precision is increased
from 34 to 128. Execution times (normalized so that the double precision time is
one): D(1), M (195), Q(25), X (25), and X(128)(177). The following scripts
implement the example: interp1d d.m, interp1d x.m, interp1d q.m, and
interp1d m.m.

Figure 6 shows the accuracy versus the shape parameter for all four ap-
proaches in approximating a derivative. The interpolants on the CGL grid in
the left image of figure 5 are differentiated. Execution times : D(1), M (712),
Q(43),X (46), andX(128)(195). The following scripts implement the example:
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Figure 5: 1d interpolation, error versus the shape parameter. In method M the
parameter α = 6 is used. Left: CGL centers. Right: uniform centers.

diff1d d.m, diff1d x.m, diff1d q.m, and diff1d m.m.

4 2d Examples

The smoothly varying function (15)

f(x, y) = e(x/2+y/5) cos(xy) (15)

and the more rapidly varying Franke function

f(x, y) =
3

4
e[

−1

4
(9x−2)2− 1

4
(9y−2)2] +

3

4
e[

−1

49
(9x+1)2− 1

10
(9y+1)2]

=
1

2
e[

−1

4
(9x−7)2−−1

4
(9y−3)2] −

1

5
e[−(9x−4)2−(9y−7)2] (16)

which is a classic test problem for RBF methods [8] are interpolated and differ-
entiated on various sets of scattered centers.

RBF methods have complete freedom on center placement. Both experience
and theory dictate that a good center distribution both well-cover a domain
(no large holes or clumps) and also mildly cluster centers around boundaries.
Randomly located centers tend to clump too much to be an effective choice.
Quasi-random sequences [17] scatter centers without a clear pattern and do not
clump centers. For this reason quasi-random sequences have become popular
tools to locate RBF centers. Hammersley and Halton sequences are two exam-
ples [17]. On the unit circle the quasi-random centers xc

k can be clustered near
the boundary via the map xk = sin(πxk/2). Example center distributions are
shown in figure 7.

12



0 2 4 6

10 -15

10 -10

10 -5

10 0
1d differentiation, CGL

d
m
q
x

Figure 6: 1d differentiation with CGL center distribution, error versus the shape
parameter. In method M the parameter α = 6 is used.

4.1 Smoothly varying function

Figure 8 shows the results of interpolating function (15) on both clustered and
uniform centers on the unit circle. The function is simple enough so that it can
be well-resolved with a small number (N = 787) of centers. With the clustered
centers methods Q and M have small O

(

10−12
)

errors. In the same small
shape region method X has an error of 9.6e-17 at ε = 1.2. With the uniform
centers the method M errors in the small shape region are O

(

10−10
)

. However,
method Q is unable to resolve the solution on the uniform centers and has errors
larger than the double precision results of the standard basis algorithm method
D. Execution times: D(1), M (28), Q(129), and X (112). The following scripts
implement this example as well as the rapidly varying function interpolation
example in the next section: interp2d d.m, interp2d x.m, interp2d q.m,
and interp2d m.m.

4.2 Rapidly varying function

The Franke function (16) is a more difficult test than function (15) as it takes a
larger number of centers to accurately resolve the function. Figure 9 shows the
accuracy over a range of shape parameter of the four methods with clustered
centers asN increases in the sequence 787, 1182, 1572, and 3140. In this example
with a larger number of centers, methods M and Q are more accurate in the
small shape region ε < 1.5, but they only achieve modest accuracy compared
to previous examples with a smaller number of centers. With all four values of
N , method X is more accurate at a shape parameter ε > 1.5 than are methods
M and Q at any value of the shape parameter. An oddity of the example is
that for the three smaller values of N , method D is more accurate than the
other methods and the accuracy is achieved at a larger shape parameter ε > 6.
With N = 3140, the method Q software has a runtime error in the pivoted QR
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Figure 7: 2d interpolation center distributions. Left: 787 clustered Halton
centers. Right: 787 uniformly spaced centers.

routine for shape parameters less than ε = 0.41. Execution times for N = 3140:
D(1), M (29), Q(51), and X (301).

4.3 Gradient of a smooth function

The gradient L = ∂
∂x + ∂

∂y of function (15) is approximated on the 787 cen-
ters that it was accurately interpolated on in the left image of figure 7. The
accuracy of the four methods is shown in figure 10. Method Q accurately re-
solves the gradient throughout the small shape region with about 10 decimal
places of accuracy. However, method M is unable to resolve the gradient in this
problem. Method M is only able to get moderate accuracy, about 3 decimal
places, for very small shape parameter (ε < 0.1). This was typical of all 2d
derivative approximations with method M. Our results are consistent with the
examples that approximate derivatives on scattered centers in two dimensions
that accompany the software package for method M. For example, the script
ex15b.m from [14] approximates the solution of a Helmholtz problem with a
local RBF method with scattered centers. The scripts implements method D
for which the error is 1.6e-5 and method M for which the error is 7.2e-2. It
is unclear as to whether this is a problem inherent to the method or if it is a
problem with its implementation in software. An examination of this issue will
be done when a 2d version of methodM is implemented in the software package
described in [23]. Method X has 13 digits of accuracy at ε = 1.2. Execution
times: D(1), M (83), Q(32), and X (106). The following scripts implement the
example: gradientCircle d.m, gradientCircle x.m, gradientCircle q.m,
and gradientCircle m.m.
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Figure 8: 2d interpolation of function (15). Left: 787 clustered Halton centers.
Right: 787 uniformly spaced centers. Method M uses α = 1.5.

4.4 Challenging problems

In this section two problems are discussed for which we were unable to suc-
cessfully apply methods Q and M. There were many other problems for which
attempts to apply the two methods were unsuccessful as well. A time consum-
ing challenge in writing this manuscript was in finding problems for which all
methods could be applied. In the end, that is why circular domains were used
for which it was previously documented [7] as how to cluster centers so that
method Q could be successfully applied. For a non-circular domain, it is a
non-trivial task to find a “good” clustering of centers that allow method Q be
accurate. The domains and center distributions in figure 11 represent two cases
in which method Q was unable to produce acceptable results. Both problems
entail derivative calculation on scattered centers which is difficult for method
M.

The Poisson problem

−uxx − uyy = π2 sin(πx) sin(πy) (17)

with Dirchlet boundary conditions prescribed according to the exact solution

u(x, y) = 1− x+ xy +
1

2
sin(πx) sin(πy)

is discretized on the complexly shaped domain in the right image of figure 11
with 2509 centers. Method D produced its best accuracy at ε = 3.6 with an
error of 8.6e-6 and method X was most accurate at ε = 1.85 with an error of
4.3e-14. Execution times: D(1) and X (268). The following scripts implement
the example: poisson d.m, poisson x.m, poisson q.m, and poisson m.m.

The gradient of function 15 is approximated on the 2839 centers in the com-
plexly shaped domain shown in the left image of figure 11. Method D produced
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Figure 9: Franke function interpolation with clustered centers. Accuracy versus
the shape parameter. The method M parameter is α = 6. Top left: N = 787.
Top right, N = 1182. Lower left, N = 1572. Lower right, N = 3140.

its best accuracy at ε = 1.35 with an error of 6.5e-5 and method X was most ac-
curate at ε = 1.5 with an error of 8.6e-13. Execution times: D(1) and X (130).
The following scripts implement the example: gradientComplex d.m, gradi-
entComplex x.m, gradientComplex q.m, and gradientComplex m.m.

4.5 Local RBF method

The local RBF method for the numerical solution of PDEs sets up a stencil of
n− 1 neighboring centers at each of the N centers in the domain. N size n× n
linear systems are solved to determine the weights on the stencils. In this section
an example is constructed that uses the evaluation methods to determine the
stencils weights and compares the methods on accuracy and execution times.
An example stencil is shown in figure 12. The center distribution consists ofN =
5000 clustered Hammersley points on the unit circle. Stencil sizes of 8, 20, 50,
and 100 are used and a fixed shape parameter of ε = 1.75 is used. The accuracy
is check at the stencil that is centered at (-0.38,0.63). The reference stencil for
which the accuracy of the other methods is checked against is calculated with
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Figure 10: Gradient of function function (15). Differentiated interpolant from
the left image of figure 8 using 787 clustered Halton centers. Method M pa-
rameter α = 1.5.

method X(p) with p = 500. The condition number of the reference stencil and
the accuracy of each approach is summarized in the following table:

n κ(B) D X Q
8 3.2e8 3.8e-4 6.8e-23 7.8e-11
20 3.8e13 - 2.4e-18 1.9e-10
50 3.7e22 - 3.9e-9 5.4e-9
100 2.3e30 - 2.0e-1 1.3e-7

The weights in the standard RBF basis (methods D, X, and X(p)) are the
solution of a linear system and their accuracy is roughly explained by condition
number rule of thumb from elementary numerical analysis [28]. That is, the
number of accurate decimal places in the solution of a linear system is approxi-
mately p−k where p is the number of digits of accurate decimal places that the
system is capable of and the condition number of the matrix is O

(

10k
)

. Thus,
the solution of a linear system using X(100) should accurately calculate sten-
cils weights to at least 16 decimal places for condition numbers up to O

(

1084
)

.
The execution time in seconds of each method for calculating all 5000 stencils
weights is summarized in the following table:

8 20 50 100
D 0.24 0.36 0.51 0.98
X 6.7 9.2 25.9 101.6

X(100) 10.7 25.6 127.9 479.0
Q 41.9 58.1 102.9 168.2

The scripts localRbfWeights.m and localRbfWeightsTiming.m carry out
the example.
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Figure 11: Bad centers for alternative basis algorithms: Left: region with holes,
3061 centers. Right: complexly shaped domain with 2509 centers
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Figure 12: N = 2000 clustered Hammersly points on the unit circle. A local
stencil centered at (-0.38,0.63) (red asterick) and 49 nieghboring points (green
circles) on the stencil.

5 Conclusions

The following methods have been considered for the evaluation of the RBF ap-
proximation method: Method D uses double precision floating arithmetic and
the standard basis functions for the RBF method. MethodX uses extended pre-
cision floating arithmetic and the standard basis functions for the RBF method.
Method X, using 34 digits of decimal precision which corresponds to the IEEE
quadruple type, is optimized for efficiency compared to arbitrary length ex-
tended types. Both methods D and X can be regularized by the method of
diagonal increments in order to alleviate the ill-conditioning problem. Meth-
ods Q and M uses alternative basis functions that span the same space as the
standard basis. The expansion of method Q is based on observations about
the eigenvalues of the system matrix while method M is based on a Mercer
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expansion of the Gaussian RBF. In the rest of the conclusion the strengths and
weaknesses of each method are summarized.

Methods M and Q in double precision are capable of exceptional accuracy
with small shape parameters and a small to moderate number of centers. The
success of method Q is strongly dependent on a distribution of centers that
are “adequately” clustered around boundaries. Method M is less sensitive to
the location of centers. With a larger number of centers (N > 1000), both
methods may still produce several accurate decimal places with small shape
parameters. Extended precision could be used to increase this number, but in
this case it would simply be better to use method X. On center distributions in
which method Q accurately interpolated functions, it also accurately resolved
derivatives. Method M was unable to accurately approximate derivatives in
2d, even with center locations in which it could accurately interpolate. It was
limited to providing two or three decimal places of accuracy for ǫ < 0.1. Method
Q does not contain any free parameters. Method M has a parameter α that
must be specified. The method M software will select a value of α based on
eigenfunction orthogonality but in all numerical examples the value was far
from optimal. In the examples, trial and error was used to find the value of the
parameter that worked best. A good choice of α is vital to the success of method
M. Both method M and Q are complex, and their software implementations
even more so, when compared to the standard RBF method (method D) and
they stray far from the hallmark of the RBF method, which is simplicity.

Method X is undeniably the simplest alternative to method D. It uses reli-
able, well tested, linear algebra routines that accept a custom data type. Con-
verting computer code from method D to method X entails only very minor
changes. In the example problems, method X usually produced the overall best
accuracy which was at a shape parameter that was located outside of the small
shape parameter region in which methods M and Q are most suited. In the
small shape parameter region in which methods M and Q are most suited,
method X typically is unable to match their accuracy. However, if the number
of accurate decimal digits is increased to above 34, method X(p) can match or
exceed the accuracy of methods M andQ at the expense of additional computer
time.

The obvious drawback of method X is execution speed since quadruple and
arbitrary precision are implemented in software. Currently a quadruple flop
takes approximately 100 times a double flop as well as the additional overhead
of setting up and storing custom data types. For small 1d problems, method
X typically takes about 80 to 100 times longer to execute than does method D
while for larger higher dimensional problems method X may take 200 to 300
times longer to execute than does method D. Until the quadruple type is imple-
mented in specialized hardware registers an option for increasing speed is GPU
acceleration. While not currently implemented in the MCT, other extended
precision floating point systems have seen benefits from GPU acceleration [1].
All problem domains that have been used have a type of symmetry that allow
RBF methods using the standard basis (methods D and X ) to be implemented
more efficiently. The symmetry can be exploited and the leading term in the
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flop count of the associated linear algebra algorithms can be reduced by a fac-
tor of four [24]. The savings can somewhat alleviate the extra computational
expense of method X. For example, in the derivative approximation in section
4.3 symmetry can be exploited to reduce the performance penalty from 106 to
46 (implemented in gradientCircle xc.m). For larger N , the execution time
reduction approaches a factor of 3.5.

The source code that implements all examples in this manuscript is available
from the first author’s website.
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