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Abstract

Global polynomial approximation methods applied to piecewise
continuous functions exhibit the well-known Gibbs phenomenon. We
summarize known methods to remove the Gibbs oscillations and present
a collection of Matlab programs that implement the methods. The soft-
ware features a Graphical User Interface that allows easy access to the
postprocessing algorithms for benchmarking and educational purposes.

1 Introduction

Spectral methods approximate functions by projection onto a space PN of
orthogonal polynomials of degree ≤ N . When the underlying function is
periodic trigonometric (Fourier) polynomials are employed while a popular
choice for non-periodic functions are the Chebyshev polynomials. Legendre
polynomials are another option in the non-periodic case but are not as popu-
lar in applications due to the lack of a fast transform method. However spec-
tral methods based on other, non-classical orthogonal polynomials are pos-
sible as well. For example see references [6] and [44]. Spectral methods yield
extremely accurate approximations of smooth functions. Due to their ex-
cellent approximation properties, spectral methods have become popular in
applications such as numerical partial differential equations. However, when
functions are only piecewise smooth the well-known Gibbs phenomenon ap-
pears as an accuracy reduction to first order away from discontinuities and
O (1) oscillations in the neighborhoods of jumps. The Gibbs phenomenon
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is illustrated in figure 1 for both the Fourier and Chebyshev approximation
of the function

f(x) = χ[−0.5,0.5] ∗ sin[cos(x)] (1)

that will be used throughout to demonstrate the software.
A number of methods have been suggested for the purpose of reduc-

ing or eliminating the Gibbs phenomenon. They include: spectral filtering
[43], physical space filtering using mollifiers [19, 39, 40, 38, 41], digital total
variation filtering [33], rational reconstruction [27, 21], and a variety of di-
rect [17, 12] and indirect [36, 23] reprojection methods. The most powerful
methods need to know the exact location of all discontinuities.

The purpose of this paper is to describe a Matlab software package, the
Matlab Postprocessing Toolkit (MPT), that implements edge detection and
postprocessing algorithms for Chebyshev and Fourier spectral methods in
one and two space dimensions. The software is intended for applications, al-
gorithm benchmarking, and educational purposes. The MPT is a significant
extension and translation of the Spectral Signal Processing Suite (SSPS)
[32]. The SSPS was implemented in the Java programming language which
limited its usefulness. The SSPS only implemented edge detection, spectral
filtering, and Gegenbauer Reprojection, for one dimensional Chebyshev ap-
proximations. The MPT is implemented in a language known by a large
number of scientists and engineers and is broader in the scope of algorithms
implemented.

2 Global Polynomial Approximation Methods

The software package is based on interpolation, rather than expansion, meth-
ods incorporating Chebyshev and trigonometric polynomials. Interpolation
and expansion methods have the same excellent approximation properties
but we have chosen interpolation since pseudospectral methods for PDEs
are based on interpolation. The interpolating approximation

INf(x) =
∑

k

ak φk(x) (2)

with expansion coefficients ak and basis functions φk(x) on interval Ω =
[−1, 1], satisfies INf(xi) = f(xi) at N + 1 interpolation sites xi. Inter-
polation means that f(x), the function that is approximated, is a known
function (at least at the interpolation sites) while the terms collocation and
pseudospectral are applied to global polynomial interpolatory methods for
solving differential equations for an unknown function f(x). We refer to
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Figure 1: Spectral approximation of function (1) vs. the exact function.
The function is known at N = 200 interpolation sites and the interpolant is
evaluated at M = 298 evenly spaced points. Left: Fourier. Right: Cheby-
shev.

both situations as spectral approximation or spectral methods. Detailed
information on spectral methods may be found in the standard references
[3, 4, 20, 29, 42].

2.1 Chebyshev Interpolation

In (2) the index k runs over k = 0, 1, . . . , N and the basis functions are the
Chebyshev polynomials [26]

φk(x) = Tk (x) = cos(k arccos (x)). (3)

The expansion coefficients are efficiently calculated via the FFT (chebyshev-
Coefficients.m). The interpolation sites are the Chebyshev-Gauss-Lobatto
(CGL) points

xk = − cos
(

kπ

N

)
k = 0, 1, . . . , N. (4)

The CGL points are the locations of the n − 1 extrema of Tn(x) plus the
endpoints of the interval [−1, 1]. (chebyshevInterpolation.m, chebyshevIn-
terpolation2d.m)
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2.2 Fourier (Trigonometric) Interpolation

The degree 2N Fourier approximation (fourierInterpolation.m, fourierInter-
polation2d.m) method uses evenly spaced interpolation sites

xk = −1 +
2
N

k, k = 0, 1, . . . , 2N − 1 (5)

on [−1, 1]. In (2) the index k runs over k = −N,−N + 1, . . . , N and the
basis functions are the trigonometric polynomials

φk(x) = eikπx. (6)

The expansion coefficients are efficiently calculated via the FFT.

3 Edge Detection
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Figure 2: Un-enhanced and enhanced edge detection data produced by
edgeDetectChebyshev example.m using the exponential concentration fac-
tor. The following edge detection parameters were used: Q = 2, J = 30,
and η = 2.

The majority of postprocessing algorithms either require or may incor-
porate the exact location of discontinuities, or edges, in the function. Edge
detection methods have been developed in references [10, 11]. Two choices
of concentration factors are available in the edge detection routines, a linear
concentration factor of σ(ξ) = ξ and an exponential concentration factor
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σ(ξ) = ξ exp( 1
6ξ(ξ−1)). Details on concentration factors can be found in

references [10] and [11].
The edges are located by examining a weighted derivative of the spectral

interpolant

ue(x) = w
d

dx
INf(x) (7)

where the weight is w = 1/N in the Fourier case and w = π
√

1− x2/N
for the Chebyshev case. Denoting the location of discontinuities as αj and
defining jumps as

[f ](x) := f(x+)− f(x−)

the convergence of ue(x) to the location of the discontinuities may be de-
scribed as

ue(x) →
{ O (

1
N

)
when x 6= αj

[f ] (αj) when x = αj .

While a graphical examination of ue(x) verifies that it does have the de-
sired convergence properties, an additional step is needed to numerically
pinpoint the location of the discontinuities. For that purpose, a non-linear
enhancement [11] is made to ue(x) as

un(x) = N
Q
2 [ue(x)]Q.

The enhanced sum has the convergence properties

un(x) →
{
O

(
N

−Q
2

)
when x 6= αj

N
Q
2 [[f ] (αj)]

Q when x = αj .

By choosing Q > 1, the separation is enhanced between the O([ 1
N ]

Q
2 ) points

of smoothness and the O(N
Q
2 ) points of discontinuity. The problem depen-

dent threshold parameter J is then used to pinpoint the location of all jumps
and the edges are located by redefining ue(x) as

ue(x) =
{

ue(x) if |un(x)| > J
0 otherwise.

Computational experience [32] has lead to the inclusion of an additional
parameter η which controls the number of edges that can be found in the
neighborhood of a local maximum of ue(x). If the maximum occurs at
x(i), then the parameter allows only one edge to be found in the interval
(x[i− η], x[i + η]), i = 0, ..., N .

Matlab files: (Note: the inputs and outputs of all the MPT functions
are documented in the m-files)
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1. edgeDetectChebyshev.m

2. edgeDetectFourier.m

3. edgeDetectChebyshev example.m - The example applies the edge de-
tection routine to the Chebyshev approximation of the function

f(x) =





cos(πx/2) x < −0.5
x3 − sin(3πx/2) −0.5 ≤ x ≤ 0.5
x2 + 4x3 − 5x x > 0.5

(8)

The output is shown in figure 2.

4 Postprocessing Methods

4.1 Spectral Filters
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Figure 3: Output produced by spectralFilter example.m. Left: Function (1),
and the filtered Fourier approximation of the function. Right: Error of the
Fourier approximation and the reduced error of the filtered approximation.

Spectral filters [43] lessen the effects of the Gibbs phenomenon by work-
ing in transform space as

FNf(x) =
∑

k

σ(k/N) ak φk(x) (9)
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The convergence rate of the filtered approximation is determined solely by
the order, ρ > 1, of the filter and the regularity of the function away from the
point of discontinuity. If the filter order, ρ, is chosen increasing with N , the
filtered expansion recovers exponential accuracy away from a discontinuity.
Assuming that f(x) has a discontinuity at x0 and setting d(x) = x−x0, the
estimate

|f(x)−FN (x)| ≤ K

d(x)ρ−1Nρ−1
(10)

holds where K is a constant. If ρ is sufficiently large, and d(x) is not too
small, the error goes to zero faster than any finite power of N , i.e. spectral
accuracy is recovered. When x is close to a discontinuity the error increases.
If d(x) = O(1/N) then the error estimate is O(1).

The following ρth order spectral filters are implemented in the MPT:

1. exponential filter
σ1(ω) = e(ln εm) ωρ

, (11)

where ρ even and εm represents machine zero.

2. Erfc-Log filter [2]

σ2(ω) =
1
2

erfc

(
2
√

ρ [|ω| − 1/2]

√
− ln (1− 4 [|ω| − 1/2]2)

4 [|ω| − 1/2]2

)
(12)

3. Vandeven filter [43]

σ3(ω) = 1− (2ρ− 1)!
(p− 1)!

∫ |ω|

0
tρ−1(1− t)ρ−1dt (13)

Matlab files:

1. spectralFilter.m

2. spectralFilter example.m - The example calculates the Fourier approx-
imation of the function (1) and the filtered approximation using the
fourth-order Vandeven filter. The output is shown in figure 3. The
right image shows the increased accuracy of the filtered approximation
away from the discontinuity. The oscillatory Fourier approximation is
in the left image of figure 1.

3. filterFourier.m

4. filterFourier2d.m
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5. filterChebyshev.m

6. filterChebyshev2d.m

4.2 Digital Total Variation Filtering

The Rudin, Osher, and Fatemi (ROF) Total Variation (TV) denoising model
is a popular image processing method to remove noise from a digital image.
The model formulates a minimization problem which leads to a nonlinear
Euler-Lagrange PDE to be solved by numerical PDE methods. In [5, 28]
the authors develop a discrete version of the TV model on a graph - Digital
Total Variation (DTV) filtering. Viewing an oscillatory function as an image
with noise, the DTV method was used to postprocess spectral approxima-
tions in [33] and Radial Basis Function approximations in [34]. The method
works with point values in physical space and not with the spectral expan-
sion coefficients. The DTV method does not need to know the location of
edges. The point values may be located at scattered, non-structured sites,
in complex geometries. The DTV method is very computationally efficient.
While the method does mitigate the effects of the Gibbs phenomenon it does
not make any claims of restoring spectral accuracy.
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Figure 4: Output produced by dtvFilter example.m. Left: Function (1)
and the DTV postprocessed Fourier approximation. Right: Error of the
Fourier approximation and the reduced error of the DTV postprocessed
approximation.

To summarize the method, let [Ω, G] be a finite set Ω of nodes and a

8



dictionary of edges G connecting the nodes. General vertices are denoted
by α, β, · · · . The notation α ∼ β indicates that α and β are linked by an
edge. All the neighbors of α are denoted by

Nα = {β ∈ Ω |β ∼ α}. (14)

The graph variational problem is to minimize the fitted TV energy

ETV
λ (u) =

∑

α∈Ω

|∇αu|a +
λ

2

∑

α∈Ω

(uα − u0
α)2 (15)

where u0 is the spectral approximation containing the Gibbs oscillations and
λ the user specified fitting parameter. The unique solution to this problem
is the solution of the nonlinear restoration equation

∑

β∼α

(uα − uβ)
(

1
|∇αu|a

+
1

|∇βu|a

)
+ λ(uα − u0

α) = 0 (16)

where the regularized location variation or strength function at any node α
is defined as

|∇αu|a =


 ∑

β∈Nα

(uβ − uα)2 + a2




1/2

. (17)

The regularization parameter a is a small (the default in the software is
a = 0.0001) value used to prevent a zero local variation and division by
zero.

The nonlinear system can be solved by a linearized Jacobi iteration as
was done in [5, 33, 34]. Alternatively, we can work with the nonlinear
restoration equation (16) and use time marching to reach a steady state

duα

dt
=

∑

β∼α

(uα − uβ)
(

1
|∇αu|a

+
1

|∇βu|a

)
+ λ(uα − u0

α). (18)

Preconditioning equation (18)

duα

dt
=

∑

β∼α

(uα − uβ)
(

1 +
|∇αu|a
|∇βu|a

)
+ λ |∇αu|a (uα − u0

α). (19)

yields a faster convergence to the steady state [28]. The software uses time
marching with the explicit Euler’s method. Typically about 100 time steps
are required to approach a steady state. An optimal value of the fitting
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parameter λ is not known. However, a large range of values for the fitting
parameter results in a “good” postprocessing. In general, stronger oscilla-
tions are best handled with a small fitting parameter (< 10) while weaker
oscillations require a larger value of the fitting parameter. More details on
selecting the value of the shape parameter can be found in references [33]
and [35].

(i,j)

(i,j+1)

(i,j−1)

(i−1,j) (i+1,j) (i,j)

(i,j+1)

(i,j−1)

(i−1,j) (i+1,j)

(i−1,j+1) (i+1,j+1)

(i−1,j−1) (i+1,j−1)

Figure 5: 2d DTV neighborhoods: Left, N4
α. Right: N8

α

In two space dimensions there is more than one way to define Nα (fig-
ure 5). One is to consider at a node αi,j four neighboring points, N4

α =
{αi,j+1, αi+1,j , αi,j−1, αi−1,j} and another is an eight point neighborhood,
N8

α = {αi,j+1, αi+1,j+1, αi+1,j , αi+1,j−1, αi,j−1, αi−1,j−1, αi−1,j , αi−1,j+1}.
Matlab files:

1. digitalTotalVariationFilter.m - 1d non-periodic

2. digitalTotalVariationFilterPeriodic.m - 1d periodic

3. digitalTotalVariationFilter 2d.m - 2d non-periodic using N4
α

4. digitalTotalVariationFilter 2d 8.m - 2d non-periodic using N8
α

5. digitalTotalVariationFilterPeriodic 2d.m - 2d periodic using N4
α

6. digitalTotalVariationFilterPeriodic 2d 8.m - 2d periodic using N4
α

7. fourierDTV example.m - The example postprocesses the Fourier ap-
proximation of function (1) using the DTV filter (digitalTotalVaria-
tionFilterPeriodic.m) with λ = 10 and 100 time steps. The output is
shown in figure 4. The oscillatory Fourier approximation is in the left
image of figure 1.
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8. periodic dtv example 2d.m - The example postprocesses the Fourier
approximation of the function

f(x) =
{

1 x2 + y2 ≤ 1
4

0 otherwise
(20)

using the DTV filter (digitalTotalVariationFilterPeriodic.m) with λ =
10 and 100 time steps. The output is shown in figure 6. The function
is sampled on a 64 × 64 grid and evaluated on a uniformly spaced
98× 98 grid.
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Figure 6: Output produced by periodic dtv example 2d.m. Left: Fourier
approximation of function (20). Right: The DTV postprocessed Fourier
approximation using digitalTotalVariationFilterPeriodic 2d.m.

4.3 Rational Reconstruction

Rational functions have been used in several different forms to reduce the
Gibbs phenomenon [7, 8, 21, 27]. Rational functions are more complex
than simple polynomials and often do better in approximation discontinuous
functions or functions with steep gradients.

A Padé approximant is of the form

RK,M =
PK

QM
=

∑K
k=0 pkφk(x)∑M

m=0 qmφm(x)
(21)

The linear Padé approximation of a function u is determined by imposing
the orthogonality relations

〈Qu− P, φ〉 = 0, ∀φ ∈ PN (22)
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This results in a linear system with M +1 unknowns and K −N equations.
After the degree of the denominator M is chosen the degree of the numerator
is set as K = (N −Nc)−M where Nc <= N is a cutoff value that specifies
how many of the high order expansion coefficients are not used to form the
Padé approximation. This is necessary since a significant portion of the high
modes are polluted when discontinuous functions are approximated [21, 27].
This results in a linear system with one more unknown than equation. In the
Chebyshev case (chebyshevPade.m based on [7]) this is resolved by setting
q0 = 1 which leaves a M ×M linear system to be solved for q1, . . . , qM . In
the Fourier case (fourierPade.m) we have followed the method outlined in
[27].

Matlab files:

1. fourierPade.m

2. chebyshevPade.m

3. chebyshevPade example.m - Figure 7 shows the output of the cheby-
shevPade example.m which applies chebyshevPade.m with M = 14 to
postprocess function (1). The oscillatory Chebyshev approximation is
in the right image of figure 1.
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Figure 7: Output produced by chebyshevPade example.m. Left: Function
(1), and the postprocessed approximation of the function. Right: Error of
the Chebyshev approximation and the reduced error of the postprocessed
approximation.
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The rational reconstruction code of the MPT does not incorporate edge
detection. However, if we are to recover spectral accuracy at the point of
a discontinuity [8] or to accurately postprocess computational data from a
PDE problem, it will be necessary to use the locations of discontinuities. A
discussion of how to incorporate edge detection into the rational reconstruc-
tion algorithms and numerical examples can be found in reference [21].

4.4 Reprojection Methods

Reprojection methods take the spectral projection and project in onto an-
other basis. In the new basis, spectral accuracy is recovered. Pinpointing
the exact location of discontinuities is crucial to the success of the methods.
Let ξ(x) be the map that takes x ∈ [a, b] to ξ ∈ [−1, 1] and let x(ξ) be the
inverse of the map. In each of the i smooth subintervals [a, b] the function
is reprojected as

f i
P (x) =

mi∑

`=0

gi
`Ψ`[ξ(x)] (23)

onto a basis Ψ`(x) of polynomials, the reprojection basis, which are orthog-
onal on [−1, 1] with respect to a weight function w(x) under the weighted
inner product (Ψk(ξ), Ψk(ξ))w which satisfies

(Ψk(ξ),Ψ`(ξ))w =
∫ 1

−1
Ψk(ξ)Ψ`(ξ)w(ξ)dξ = γ`δk` (24)

where γ` is a normalization factor. The expansion coefficients gi
` are evalu-

ated via a Gaussian quadrature formula. If the function being approximated
is known at the quadrature points, gi

` are referred to as the exact reprojection
coefficients. Otherwise the spectral interpolant (2) is used to approximate
the function at the quadrature points and the coefficients are referred to as
the approximate reprojection coefficients ĝi

`.

4.4.1 Gegenbauer Reprojection

The Gegenbauer Reprojection Procedure (GRP) uses the Gegenbauer or
Ultraspherical polynomials Cλ

` as the reprojection basis. The GRP was de-
veloped in the series of papers [18, 13, 16, 14, 15, 17]. Further analysis and
application of the GRP can be found in references [1, 22, 30, 31]. The Gegen-
bauer polynomials satisfy the conditions of a Gibbs complementary basis [20]
which allows for a spectrally accurate reprojection. The weight function as-
sociated with the Gegenbauer polynomials is w(x) = (1 − ξ2)λ−1/2. The
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Gegenbauer polynomials (gegenbauerPolynomial.m) are calculated via the
three term recurrence relation

Cλ
k+1(ξ) =

2(k + λ)ξ
k + 1

Cλ
k (ξ)− k + 2λ− 1

k + 1
Cλ

k−1(ξ), k = 2, 3, . . . (25)

with Cλ
0 = 1 and Cλ

1 = 2λξ.
In smooth subinterval i the GRP postprocessed approximation is

f i
P (x) =

mi∑

`=0

gi
`C

λ
` [ξ(x)] (26)

where the exact Gegenbauer expansion coefficients are

gi
` =

1
γλ

`

∫ 1

−1
(1− ξ2)λ−1/2Cλ

` (ξ)f [x(ξ)]dξ (27)

and

γλ
` = π

1
2

Γ(` + 2λ)Γ(λ + 1
2)

`!Γ(2λ)Γ(λ)(n + λ)
.

If only the expansion coefficients ak are known and not the underlying func-
tion, as in a pseudospectral PDE approximation, the Gegenbauer coefficients
are replaced with the approximate Gegenbauer coefficients

ĝi
` =

1
γλ

`

∫ 1

−1
(1− ξ2)λ−1/2Cλ

` (ξ)INf [x(ξ)]dξ. (28)

The integrals in (27) and (28) are evaluated via Chebyshev-Gauss-Lobatto
quadrature.

Matlab files:

1. grp.m

2. fourierGRP example.m - see figure 8. The example has three smooth
subintervals Ω1 = [−1,−0.5), Ω2 = (−0.5, 0.5), and Ω3 = (0.5, 1]. The
example used the following GRP parameters: m1 = m2 = m3 = 13,
λ1 = 4, λ2 = 7, and λ3 = 4. The oscillatory Fourier approximation is
in the left image of figure 1.

3. chebyshevSV eulerDensity grp.m - Applies the GRP to postprocess
the N = 128 Chebyshev spectral viscosity approximation of the den-
sity profile of Sod’s problem [37] for the Euler equations of gas dynam-
ics. The output is in figure 9. The example has five smooth intervals:
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Figure 8: Output produced by fourierGRP example.m. Left: Function (1)
and the GRP postprocessed Fourier approximation (visually indistinguish-
able). Right: Error of the Fourier approximation and the reduced error of
the postprocessed GRP approximation.

Ω1 = [−1,−0.4456), Ω2 = (−0.4456,−0.0222), Ω3 = (−0.0222, 0.3461),
Ω4 = (0.3461, 0.6606), and Ω5 = (0.6606, 1]. The following GRP pa-
rameters were used in the example: m1 = 4, m2 = 12, m3 = 4, m4 = 4,
m5 = 4, λ1 = 5, λ2 = 6, λ3 = 6, λ4 = 4, and λ5 = 4.

4.4.2 Freud Reprojection

The Freud Reprojection Procedure (FRP) [9, 12] uses the Freud polynomials
ψ as the reprojection basis and the weight function is w(ξ) = e−cξ2λ

where
λ = αN , 0 < α < 1, and c = ln εM where εM is machine epsilon. We have
used λ = round

(√
N(b− a)/2− 2

√
(2)

)
which was suggested in [12].

In [12] an additional condition is added to the three conditions that a
Gibbs complementary basis must satisfy. A basis that satisfies the four
conditions is called a Robust Gibbs complement. The Freud polynomial
basis is an example of a Robust Gibbs complement. Freud reprojection does
not suffer from the numerical roundoff errors and the Runge phenomenon
that the GRP does [1]. The Freud polynomials are not known explicitly but
can be computed recursively as

ψk+1(ξ) = ξψk(ξ)− γk

γk−1
ψk−1(ξ)
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Figure 9: Output of chebyshevSV eulerDensity grp.m. Left: Chebyshev
spectral viscosity and GRP postprocessed Euler density solution at time t
= 0.4. Right: Error of the postprocessed solution.

where ψ0(ξ) = 1 and ψ1(ξ) = ξ. The recursion coefficients are

γk = (ψk(ξ), ψk(ξ))w =
∫ 1

−1
ψk(ξ)ψk(ξ)e−cξ2λ

dξ. (29)

The exact Freud coefficients are

gi
` =

1
γ`

∫ −1

1
e−cξ2λ

ψ`(ξ)f [x(ξ)]dξ. (30)

and the approximate Freud coefficients are

ĝi
` =

1
γ`

∫ −1

1
e−cξ2λ

ψ`(ξ)INf [x(ξ)]dξ. (31)

Integrals (29), (30), and (31) are evaluated very accurately using the trape-
zoid rule which is exponentially accurate for smooth periodic functions. In
smooth subinterval i the FRP approximation is

f i
P (x) =

mi∑

`=0

gi
`ψ`[ξ(x)]. (32)

In each subinterval of smoothness mi is set mi = N(b − a)/8. However, as
N increases the number of terms in the reprojection basis mi is more than
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is necessary to numerically resolve the function and the higher numbered
reprojection coefficients become very close to machine epsilon which leads
to round-off errors. As described on p. 15 of [12], the round-off errors
can be avoided by resetting mi to a value that prevents the average of
three consecutive reprojection coefficients from being larger than a specified
tolerance. Experimentally we have found a tolerance of 10e−12 to work well
in the Fourier case and 10e−8 to work well with Chebyshev approximations.

For the FRP, the specification of M is not function-dependent as is the
case for the GRP. The FRP does not have any function-dependent param-
eters to be supplied by the user. This is in contrast to the GRP which
depends heavily on the proper specification of both a weight parameter λ
and reprojection order M .

Matlab files:

1. frp.m

2. freudPolynomials.m

3. fourierFreud example.m - The script uses the FRP to postprocess the
oscillatory Fourier approximation in the left image of figure 1. The
results are shown in figure 10. The following FRP parameters were
used: m1 = 2, m2 = 12, m3 = 2, λ1 = 7, λ2 = 11, and λ3 = 7.

4.4.3 Inverse Reprojection

The Gegenbauer and Freud reprojection methods are referred to as direct
methods as they compute the reprojection coefficients directly from the
spectral expansion coefficients ak (or function values). In contrast, inverse
methods compute the reprojection coefficients by solving a linear system of
equations

Wg = a.

The Inverse Reprojection method was developed in [23, 24, 36]. Originally
[36], the Gegenbauer polynomials were used as the reprojection basis, but
later [23, 24] the method was generalized to yield a unique reconstruction
using any set of basis functions. The generalized method is referred to as the
inverse polynomial reconstruction method (IPRM). We have implemented
the method using the Gegenbauer polynomials as the reconstruction basis.
Note that since the IPRM uniquely determines the reconstruction for any
reconstruction basis, the Gegenbauer parameter λ does not play a role in
the method as it does in the GRP method. The matrix W may be very
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Figure 10: Output produced by fourierFreud example.m. Left: Function (1)
and the FRP postprocessed Fourier approximation (visually indistinguish-
able). Right: Error of the Fourier approximation and the reduced error of
the postprocessed FRP approximation.

ill-conditioned. The conditioning of W is best for small λ > 0 [36]. In the
computer code the default is λ = 1/2 which corresponds to the Legendre
basis. Care has been taken to consistently evaluate the spectral expansion
coefficients and the integrals that determine the elements of the matrix W
as is discussed in [23]. Both are evaluated using Gaussian quadrature.

The main weakness of the IPRM is that an ill-conditioned linear system
has to be solved. This problem is addressed in reference [25]. To date,
the IPRM method has not been successfully applied to spectral viscosity
solutions of hyperbolic conservation laws.

Matlab files:

1. inverseReprojection.m

2. fourierIPRM example.m - This script uses the IPRM to postprocess
the oscillatory Fourier approximation in the left image of figure 1. The
output is shown in figure 11. The following IPRM parameters were
used: m1 = 2, m2 = 6, and m3 = 2.
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Figure 11: Output produced by fourierIPRM example.m. Left: Function (1)
and the IPRM postprocessed Fourier approximation. Right: Error of the
Fourier approximation and the reduced error of the postprocessed IPRM
approximation.

5 Graphical User Interface

The Matlab functions of the MPT may be called directly as we have done
in the included examples. Additionally, to make the MPT functions more
accessible to non-Matlab users a graphical user interface (GUI) has been de-
veloped. The GUI has built-in functions and pseudospectral PDE solutions
that can be used to demonstrate and benchmark the algorithms. The Fourier
PDE examples include linear advection and inviscid Burger’s equation and
the Chebyshev examples include linear advection and the Euler equations
of gas dynamics. It is beyond the scope of this work to document the GUI.
A brief users guide to the GUI is in the file mptGuiGuide.pdf. Updates and
more details on the GUI will appear at www.scottsarra.org/mpt/mpt.html
as they are available. A screen shot of the GUI is shown in figure 12.

6 Concluding Comments

We have described a suite of Matlab programs that implement state-of-the-
art postprocessing and edge detection algorithms for Fourier and Chebyshev
spectral approximations of piecewise smooth functions in one and two space
dimensions. Postprocessing methods that require one or more user defined
parameters be specified in each smooth subregion are difficult to implement
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Figure 12: Graphical user interface

in two space dimensions. For this reason, the MPT only implements spectral
filtering and DTV filtering in two dimensions. Although not the most pow-
erful one dimensional methods, they are very computationally efficient and
the closest to “black box” algorithms in two dimensions. In two dimensional
applications, many of the one dimensional methods can been applied to one
dimensional slices in the x or y direction. This approach has been taken in
references [24] and [27].

The MPT functions may be used as in our examples by calling them
from a Matlab script. Alternatively, the routines may be accessed from
a GUI. The postprocessing functions and accompanying GUI with built-
in example functions and PDE solutions provide users the opportunity to
benchmarch and demonstrate the postprocessing algorithms. Experienced
Matlab users will find it easy to modify the GUI to incorporate their own
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algorithms or example problems. The home of the MPT on the web is
www.scottsarra.org/mpt/mpt.html. The development of the MPT is ongo-
ing and modifications and extensions will be made as new algorithms are
developed.

We conclude with table 6 that summarizes the basic feature of the post-
processing algorithms.

edge spectral large
method detection parameters accuracy κ(A) noise
spectral filter ρ ∼ √
DTV λ

√
Padé ∼ M, Nc

√ √
GRP

√
λ,mi

√ √
FRP

√ √ √
IPRM

√
mi

√ √

A
√

in the edge detection column indicates the method must know the
exact location of the discontinuities while a ∼ indicates that the edge loca-
tion may be incorporated to improve the method. The parameters column
lists any user specified parameters. If the method incorporates edge detec-
tion the parameters must be specified in each subinterval of smoothness. A√

in the spectral accuracy column indicates the method is able to recover
spectral accuracy over the entire interval while a ∼ indicates that spectral
accuracy may be recovered over a portion of the interval sufficiently away
from the edge locations. A

√
in the large κ(A) column indicates that a

linear system must be solved to implement the method and that the ma-
trix may have a large condition number. Finally, a

√
in the noise column

indicates that the method can use noisy spectral coefficients. The inexact,
noisy spectral coefficients may result from a spectral viscosity approxima-
tion to a time-dependent nonlinear hyperbolic PDE problem in which time
integration errors and the addition of spectral viscosity have altered the
solution.
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