
Regularized Symmetric Positive Definite Matrix

Factorizations for Linear Systems arising from RBF

interpolation and differentiation

Scott A. Sarra

Marshall University

April 24, 2014

Abstract

Scattered data interpolation using Radial Basis Functions involves
solving an ill-conditioned symmetric positive definite (SPD) linear sys-
tem (with appropriate selection of basis function) when the direct
method is used to evaluate the problem. The standard algorithm
for solving a SPD system is a Cholesky factorization. Severely ill-
conditioned theoretically SPD matrices may not be numerically SPD
(NSPD) in which case a Cholesky factorization fails. An alternative
symmetric matrix factorization, the square root free Cholesky factor-
ization, has the same flop count as a Cholesky factorization and is
successful even when a matrix ceases to be NSPD. A regularization
method can be used prevent the failure of the Cholesky factorizaiton
and to improve the accuracy of both SPD matrix factorizations when
the matrices are severely ill-conditioned. The specification of the reg-
ularization parameter is discussed as well as convergence/stopping cri-
teria for the algorithm. Formation of differentiation matrices with the
regularized SPD factorizations is demonstrated to improve eigenvalue
stability properties of RBF methods for hyperbolic PDEs.

1 Introduction

The use of Radial Basis Function (RBF) methods for scattered data inter-
polation problems and for solving time-dependent Partial Differential Equa-
tions (PDEs) entails solving linear systems that are very ill-conditioned when
small shape parameters are used and when the direct method is used to eval-
uate the problem. The matrices are symmetric and with proper choice of

1



basis function are symmetric positive definite (SPD). The de facto stan-
dard algorithm for factorizing SPD matrices is the Cholesky factorization
which is available in most, if not all popular numerical linear algebra soft-
ware libraries. For use with RBF methods a factorization that is not as
prevalent in standard numerical linear algebra libraries, the square root free
Cholesky factorization, may be a better choice. In general, the square root
free Cholesky factorization factorization may be preferable for SPD matrices
since it avoids the need to calculate square roots [19].

With either SPD factorization, a regularization technique that is im-
plemented iteratively can be used to implement RBF methods over a wide
range of shape parameter in a stable manner. The regularization technique
has been previously used in the literature with RBF methods ([7],[28], and
[2]) but it is unclear how to specify the regularization parameter of the
method and what criteria should be used to terminate the iteration. The
use of regularized SPD (RSPD) factorizations have not previously been de-
scribed for RBF methods for time-dependent PDEs. The implementation
and efficiency of the RSPD factorization in two popular scientific computing
environments, Matlab [27] and the Python package SciPy [22], is examined.

We note that the RBF interoplation method in not intrinsically ill-
conditioned, but it is the direct approach of solving the linear system de-
termined by interpolation conditions that may be ill-conditioned. So-called
bypass algorithms have been developed that evaluate the RBF interpolation
problem in a stable manner for all values of the shape parameter without
directly dealing with the linear system. Two bypass algorithms are the
Contour-Padé algorithm [12] and the RBF-QR algorithm [11]. Both algo-
rithms have been valuable theoretical tools but have limitations as far as
serious applications are concerned. The Contour-Padé algorithm is limited
by that only a small number of centers can be used. Early implementations
of the RBF-QR method suffered from a large flop count. However, improve-
ments to the RBF-QR algorithm continue to be made [8] and it has found
uses in applications for the purposes of generation of RBF finite difference
stencils [10] and differentiation matrices [24]. For now, the direct method
which solves a linear system remains the most prevalent method used to
evaluate a RBF interpolation problem.

In addition to bypass methods, another approach that has been used to
allow the RBF method to be more accurate is the use of extended precision
floating point arithmetic in the direct method [20, 35]. Some author’s have
found the extended precision preferable to the use of bypass algorithms,
for example as stated in [25]: “Expensive strategies for a well-conditioned
basis rearrangement have been developed by Fornberg and collaborators,

2



but we prefer Sarra’s strategy, always simpler and often faster, of using
multiple precision arithmetic”. For the remainder of this work, only the
direct method implemented with double precision is considered.

2 RBF Interpolation and Differentiation

RBF interpolation uses a set of N distinct points X = {xc1, . . . , x
c
N} in Rd

called centers. No restrictions are placed on the shape of problem domains
or on the location of the centers. A RBF

φ(x) = φ(‖x− xc‖2 , ε), x, xc ∈ Rd (1)

is an infinitely differentiable (compactly supported and global RBFs without
a shape parameter and with less smoothness exist but are not considered in
this work) function of one variable r = ‖x− xc‖2 ≥ 0 that is centered at xc

and that contains a free parameter ε called the shape parameter. The RBF
interpolant assumes the form

INf(x) =
N
∑

k=1

akφ (‖x− xck‖2 , εk) (2)

where a is a vector of expansion coefficients. The inverse quadratic (IQ)
RBF

φ(r) =
1

1 + ε2r2
(3)

is used throughout. The IQ is a representative member of the class of global,
infinitely differentiable RBFs that have a shape parameter and that interpo-
late with exponential accuracy. The expansion coefficients are determined
by enforcing the interpolation conditions

INf(x) = f(xck), k = 1, 2, . . . , N (4)

which result in a N ×N linear system

Ba = f. (5)

The matrix B with entries

bjk = φ(
∥

∥xcj − xck
∥

∥

2
, εk), j, k = 1, . . . , N (6)

3



is called the system matrix. The evaluation of the interpolant (2) at M
points xj is accomplished by multiplying the expansion coefficients by the
M ×N evaluation matrix H that has entries entries

hjk = φ(‖xj − xck‖2 , εk), j = 1, . . . ,M and k = 1, . . . , N. (7)

By linearity, the RBF interpolant can be differentiated as

D (INf(x)) =
N
∑

k=1

akDφ (‖x− xck‖2 , εk) (8)

where D is a linear differential operator. The operator D may be a single
differential operator or a linear differential operator such as the Laplacian.
Evaluating (8) at the centers X can be accomplished multiplying the expan-
sion coefficients by the evaluation matrix HD with entries

hjk = Dφ(
∥

∥xcj − xck
∥

∥

2
, εk), j, k = 1, . . . , N. (9)

That is, Df ≈ HDa. Alternatively, derivatives can be approximated by
multiplying the grid function values {f(xck)}

N
k=1 by the differentiation matrix

D = HDB
−1 since

Df ≈ HDa = HD(B
−1f) = (HDB

−1)f. (10)

The shape parameter εk may take on different values at each center xck.
Such an approach is called a variable shape parameter strategy. Several
variable shape strategies [23, 38] have been suggested and present some ad-
vantages. A drawback of variable shape parameter strategies is that they
cause the RBF system matrix to be non-symmetric. A constant shape pa-
rameter results in the RBF system matrix being symmetric and for this
reason a constant shape parameter has been used throughout.

Both equations (5) for the expansion coefficients and (10) for the dif-
ferentiation matrix assume that the system matrix is invertible. The IQ
system matrix is SPD and thus invertible. While it is invertible, the system
matrix is typically very poorly conditioned. The eigenvalues of B satisfy
0 < λmin = λ1 ≤ λ2 ≤ · · · ≤ λN = λmax and the matrix condition number
in the 2-norm of is κ(B) = λmax/λmin. The eigenvalues of the IQ system
matrix satisfy the bounds [42]

λmax ≤ N (11)

and

λmin ≥ K(ε, d) q
−d/2−1/2
X exp

(

−2Cd

ε qX

)

. (12)

4



The constant Cd ≤ 6.32d depends on the space dimension d and the constant
K(ε, d) depends on the shape parameter and the space dimension [42, 6].
The minimum separation distance is defined as

qX =
1

2
min
i 6=j

∥

∥x
c
i − x

c
j

∥

∥

2
. (13)

The exponentially decaying bound for the smallest eigenvalue is the main
factor in the system matrix becoming severely ill-conditioned as the shape
parameter and minimum separation distance are decreased. The exponen-
tially decaying lower bound (12) for the minimum eigenvalue may be overly
pessimistic as numerical experiments indicate that the smallest eigenvalues
may actually decay at an algebraic rate [13]. A regularization technique will
be used in section 4 to increase the size of the minimum eigenvalue of the
matrix that is actually factorized.

For a fixed set of centers, the shape parameter affects both the accuracy
of the method and the conditioning of the system matrix. The RBF method
is most accurate for smaller values of the shape parameter where the system
matrix is ill-conditioned. The attainable error and the condition number of
the system matrix cannot both be kept small. In connection with the RBF-
direct approach, this relationship has been dubbed the uncertainty principle
[39].

Recent monographs [3, 6, 37, 42] on RBF methods can be consulted for
more information.

3 Direct methods for SPD systems

The most popular method for the solution of a general linear system Ba = f
is LU factorization which partial pivoting [40] which has as the leading term

in its flop count 2N3

3 . A SPD matrix can be factorized using half as many
flops via Cholesky factorization, B = LLT , where L is lower triangular.
Throughout, the Cholesky factorization is referred to as a LL factorization.
Both Matlab and SciPy wrap the LAPACK [1] routine DPOTRF for LL
factorization. A theoretically SPD matrix may not be numerically SPD
(NSPD). In this case, an attempted application of the LL factorization al-
gorithm encounters a square root of a negative number and fails.

The square root free Cholesky factorization is B = LDLT where L is
lower triangular with ones on the main diagonal and D is a diagonal matrix.
Throughout, the square root free Cholesky factorization is referred to as a
LDL factorization. The diagonal elements of D are the quantities in the LL

5



factorization algorithm that are the arguments of the square root function.
When the matrix being factorized is NSPD all the diagonal elements of D
are greater than zero.

Both the LL and LDL algorithms for SPD matrices are backward stable
without the need for pivoting [19]. Pseudocode for both factoization algo-
rithms can be found in standard linear algebra references such as [15]. The
two algorithms have essentially the same flop count. The major difference
between the two algorithms is that when a SPD matrix is not NSPD, the LL
factorization fails whereas the LDL factorization does not. After a matrix
has been factorized using either, LU, LL, or LDL, O

(

N2
)

forward substitu-
tion and back substitution algorithms are used to solve a linear system.

The LDL factorization should not be confused with the factorization B =
PLDLTP T for symmetric indefinite matrices [19] where P is a permutation
matrix and D is a block diagonal matrix with diagonal blocks of dimension
one or two. The algorithm is sometimes called a block LDL factorization.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

m
a
x
im

u
m
 e
rr
o
r

LL

LU

LDL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

co
n
d
it
io
n
 n
u
m
b
e
r

Figure 1: LL, LDL, and LU factorizations utilized for interpolating function
(14) over a range of shape parameters.

The LDL factorization is not as prevalent in numerical software as is the
LL factorization. The majority of Matlab and SciPy numerical linear algebra
routines wrap LAPACK routines and the LDL algorithm is not a LAPACK
routine. Matlab has had the function LDL since version 7.3 (R2006b) but
it implements the block LDL algorithm B = PLDLTP T for symmetric
indefinite matrices and not the square root free Cholesky algorithm. The

6



LDL algorithm is a part of the add on Signal Processing (DSP) toolbox for
Matlab. SciPy does not feature a LDL factorization. In the examples, a C
implementation of the LDL algorithm that is wrapped in Python has been
used.

This section ends with an example in order to establish terms and illus-
trate features of RBF interpolation. The function

f(x) = esin(πx) (14)

is interpolated at N = 55 equally spaced centers on the interval [−1, 1] and
the interpolant is evaluated at M = 175 equally spaced centers. The left
image of figure 1 displays the error versus the shape parameter resulting
from solving the problem with three different matrix factorization. The
condition number of the system matrix versus the shape parameter is in
the right image of the figure. The error curve decreases smoothly as the
shape parameter decreases until approximately ε = 2.1 is reached at which
the condition number of the system matrix is O (10e16). Below this point
numerical instability sets in and as a result the error curve oscillates but
still trends in an overall decreasing direction until ε = 1.2 is reached. LL
factorization fails at ε = 1.95 and lower due to the system matrix failing
to be NSPD. The horizontal line above smaller shape parameters in the left
image of the figure indicates that the computation is not possible in double
precision using a LL factorization. The LDL factorization also detects that
the system matrix is not NSPD at ε = 1.95 and lower by producing elements
of the diagonal matrixD that are less than zero. Unlike the LL factorization,
the LDL factorization does not fail and instead produces results as good as
LU factorization, but at half the computational cost. At the smallest shape
parameter used, ε = 0.3 the smallest negative diagonal element of the matrix
D of the LDL factorization is -1.15e-12. The range of shape parameter for
which both the LDL computation is stable and for which D has positive
diagonal elements and that the LL algorithm succeeds and is stable can be
increased by a large amount by using a regularization technique as described
in the next section.

4 Regularized SPD (RSPD) matrix factorizations

Instead of solving the system
Ba = f (15)

the regularized system
Cy = f (16)

7



where C = B + µI is solved. The parameter µ is a small positive constant
called the regularization parameter and I is the identity matrix. The tech-
nique is called the method of diagonal increments (MDI) and its first use
dates back to the 1940’s [29]. Matrix C is better conditioned than B as

κ(C) =
λmax + µ

λmin + µ
< κ(B) =

λmax

λmin
.

For small µ, (B + µI)−1 is close to B−1 and MDI simply replaces B with
(B + µI) in computing the solution of a system. Equation

B−1 − (B + µI)−1 = µ2B−1(I +B−1/µ)B (17)

quantifies how close that (B + µI)−1 and B−1 are [16, 18]. For very small
µ the difference is negligible.

Rather than just accepting a solution that is close to the desired solution
is was shown in the 1950’s that an additional step [33] could be taken to
recover more accuracy. The solution a of (15) can be computed from a series
expansion involving the solution y of the regularized system (16) as

B−1 =
1

µ

∞
∑

k=1

(

µC−1
)k

. (18)

Series (18) converges since the spectral radius of µC−1 is less than one as

0 <
µ

λi + µ
< 1, i = 1, 2, . . . , N

for all µ > 0. κ(C) may be significantly smaller than κ(B) if µ > λmin. If
µ ≪ λmin then µ/(λi + µ) ≪ 1 for all i the series converges rapidly. The
parameter µ needs to be selected to be large enough to improve conditioning
but small enough so that the convergence of the method is fast.

The solution of the original system (15) can be written as

a = B−1f (19)

=
1

µ

∞
∑

k=1

(

µC−1
)k

f (20)

=
1

µ

∞
∑

k=1

(

µC−1
)k−1

y (21)

= y + µC−1y +
(

µC−1
)2

y + · · · (22)

8



Reorganizing equation 22 as

a = y + µC−1
[

y + µC−1y + · · ·
]

(23)

allows for a to be recovered iteratively. The first term of the solution series
is the solution of the regularized system, that is a[0] = C−1f , and then
repeated correction terms

a[k+1] = a[k] + µC−1a[k], k = 0, 1, . . . (24)

are taken to recover the solution of the original system. Each calculation
of a correction term via equation (24) is called an iteration. In the modern
literature the method has become known as Riley’s method after the author
of [33].

In summary, to implement the methodB is factorized once usingO
(

1
3N

3
)

flops and then the factorization is used to solve systems with O
(

N2
)

flops.

First Cy = f is solved and then Câ = a[k] is repeatedly solved for k = 0, 1, . . .
and the solution is updated according to (24) until a maximum number of
iterations have been reached or convergence criteria are satisfied.

In recent years, from the recommendations of [7], Riley’s method has
seen application in solving RBF interpolation problems ([28] and [2]). At
this point what remain as open questions are how to best specify the reg-
ularization parameter and how to specify stopping criteria for the iteration
in order to best balance accuracy and efficiency.

4.1 regularization parameter choice and stopping criteria

Previous recommendations for values of the regularization parameter include
the following. In first paper to describe the method [33] it was recommended
that µ = 10α−p where p is the desired precision and α = 2 or 3. In double
precision at most fifteen decimal of accuracy can be expected, thus a po-
tential regularization parameter would be 1e-11 according to this guidance.
The numerical examples in [7] used the value µ = 1e-10 but no informa-
tion about the number of iterations or convergence criteria was given. In
the Scilab RBF toolbox [2], the default value of the regularization param-
eter is set to µ = 1e-6. No information about the number of iterations or
convergence criteria was given in the numerical examples, but the number
of iterations in the computer code is hard coded to two. Riley’s method
was used to evaluate the RBF interpolation problem in [28] but no informa-
tion on regularization parameter selection or convergence criteria was given.

9



0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

m
a
x
im

u
m
 e
rr
o
r

RLDL0

LDL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

κ
(B

)

κ(B)

κ(C)

Figure 2: Left: LDL and RLDL0 (the method of diagonal increments) with
µ = 5e-15. The smallest RLDL0 error is 7.99e-9 at ε = 1.15. Right: the
condition number of the regularized matrix C is approximately 1016 in the
previously unstable region.

The author states that “choosing the regularization parameter µ to maxi-
mize stability but minimize the summation length is not a straightforward
procedure, but we wont concern ourselves with it here.”

The interpolation example from section 3 is repeated throughout this
section and is solved by several RSPD algorithms with varying parameter
choices. The results in figure 2 use the RLDL0 method with µ =5e-15
and compares the accuracy of the method with the LDL factorization over
a range of the shape parameter. The figure illustrates that the RLDL0
algorithm can produce more accurate solutions in the shape parameter range
for which the system matrix is severely ill-conditioned and also produce
a non-oscillatory error curve over a large range of shape parameters for
which the LDL factorization could not. The details of the algorithm and
the explanation of parameter choices follow.

As illustrated by the example in figure 1, the linear system is being
solved accurately and in a stable manner (no oscillation of the error curve)
with system matrices with condition number of 1016 and less. However, the
smallest error is achieved in the unstable region with ε = 1.15. At this
value of the shape parameter the system matrix has a condition number
of 1.4e19 and smallest eigenvalue of -7.23e-16 when calculated in double
precision. Neither value is accurate. Using extended precision the accurate

10



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
shape parameter

10-9

10-7

10-5

10-3

10-1

101

103

105

107

109

1011

m
a
x
im

u
m
 e
rr
o
r

RLDL

LDL

Figure 3: RSPD algorithm with µ = 5e-15 and without stopping criteria
number 2 of section 4.1 after 100 iterations. Without the stopping criteria
the method diverges in double precision for shape parameters smaller than
ε = 2.05.

condition number is found to be 1.6e30 and the smallest eigenvalue is 2.2e-
29. Specifying µ smaller than the minimum eigenvalue results in the series
(18) in Riley’s method converging quickly but doing so is impossible in this
case since it results in a matrix C that has a condition number well above
1016 which can not be accurately factorized in double precision. However,
specifying the regularization parameter well above the smallest eigenvalue
of B but close to machine epsilon is effective. The range 5e-13 ≤ µ ≤ 5e-15
was used in all example problems that follow. For example, with µ = 5e-15
the matrix C has a condition number of 7.3e15. In extended precision, the
spectral radius of µC−1 is 0.9999999999999954 indicating that theoretically
the method converges very slowly. The actual convergence of the method
depends however on what the spectral radius of µC−1 is when computed
in double precision. In this case it is 1.17 and Riley’s method diverges
when implemented in double precision. Despite being divergent, the first
few iterations often lead to corrections that increase the accuracy of the
solution of the system.

When the matrix is NSPD the behavior of the method is different. For
example, again taking µ =5e-15 but with ε = 3.0 results in the matrix B
having a O

(

1012
)

condition number. The condition number of C is approx-

11



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
shape parameter

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

m
a
x
im

u
m
 e
rr
o
r

RLDL

RLDL0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
shape parameter

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

m
a
x
im

u
m
 e
rr
o
r

RLDL

RLDL0

Figure 4: RLDL with µ = 1e-10 and the maximum allowable iterations set
to 10 (left) and 1000 (right) compared to RLDL0 with µ = 5e-15. A larger
reularization parameter causes very slow convergence.

imately the same as the condition number of B. The minimum eigenvalue
of B is 3.5e-11 and the spectral radius of µC−1 is 1.4e-04. Both quantities
can be accurately calculated in double precision. The series (18) converges
rapidly to a solution that is already close to the desired solution as the
difference (17) is 1e-41. In this case either zero or very few iterations of
(24) are necessary. When the matrix is NSPD, a tolerance on the minimum
allowable relative change should be set or the method will continue to take
hundreds of iterations with small relative changes that decrease in size but
that do not result in a more accurate solution.

Based on these observations, the following are recommended for use in a
RSPD algorithm in calculating over a range of the shape parameter for which
the system matrix may or may not be NSPD. A regularization parameter in
the range 5e-13 ≤ µ ≤ 5e-15 is recommended along with the following three
termination criteria for stopping the iteration (24):

1. Stop when size of the correction term µC−1a[k] relative to the solution
y of the regularized system (16) falls below a given tolerance which by
default is set to 1e-4. The tolerance limits the number of iterations
to zero or one if it is applied to a NSPD matrix. Otherwise the algo-
rithm would take tiny correction steps up to the maximum number of
allowable iterations (criteria 3) in this region that would not improve
the solution.

2. Terminate when the relative change in criteria 1 ceases to decrease

12



from one iteration to the next. This indicates the method is beginning
to diverge. The example of this section is repeated without using
stopping criteria 2 and the result after 100 iterations is shown in figure
3. If more iterations were to be taken the solution would eventually
become infinite below ε = 2.05.

3. For safety, the algorithm also limits the maximum number of itera-
tions. The default number is five since most of gain in accuracy occurs
in the first few iterations with the suggested regularization parameter
range.

The RSPD solver with stopping criteria is as follows:

1 def RSPD(A,b,mu=5e-15,maxIt=5,tol=1e-4):

2 N = len(b)

3 C = A + mu*eye(N)

4 L, d = LDL_factor(C) # or L = LL_factor(C)

5 y = LDL_solve(L, d, b) # or y = LL_solve(L,b)

6 sizeY = norm(y,2)

7 x = y

8

9 relativeChange, relativeChangeOld, it = 0, 1e15, 0

10 while it<maxIt:

11 y = mu*LDL_solve(L, d, y)

12 correctionSize = norm(y,2)

13 relativeChange = correctionSize/sizeY

14 if relativeChange>relativeChangeOld or relativeChange<tol: break

15 it += 1

16 relativeChangeOld = relativeChange

17 x = x + y

18

19 return x

Either a LL or LDL factorization can be used in the algorithm. If a LL
factorization is used µ must be large enough to ensure that the matrix C is
NSPD.

Most of the improvement in the accuracy of the solution takes place in
the first iteration when a small regularization parameter is used. A simpler
RSPD algorithm, RSPD1, that avoids the need to test stopping criteria and
instead only takes one iteration is

1 def RSPD1(A,b,mu=5e-15):

2 N = len(b)

3 C = A + mu*eye(N)

4 L, d = LDL_factor(C) # or L = LL_factor(C)

5 x0 = LDL_solve(L, d, b) # or y = LL_solve(L,b)

13



6 x1 = mu*LDL_solve(L, d, x0)

7 return x0 + x1

An even simpler strategy that is effective is to just use the method of
diagonal increments and not use Riley iteration at all. That is, take the
solution of (B + µI)a = f to be the solution of Ba = f . Continuing the
example with µ =5e-15 that has been carried through this section, the dif-
ference between B−1 and (B + µI)−1 as given by equation (17) is 1.67e-40
in the 2 norm. In addition to MDI this approach is also called RSPD0 to
indicate that zero iterations of equation (24) are taken. Figure 5 compares
the accuracy of the RSPD, RSPD1, and RSPD0 algorithms using the default
parameter values.

0.5 1.0 1.5 2.0
shape parameter

10-8

10-7

10-6

10-5

m
a
x
im

u
m
 e
rr
o
r

RLDL0

RLDL1

RLDL

Figure 5: The smallest RLDL0 error is 7.99e-9, the smallest RLDL1 error is
6.24e-9, and the stopping criteria of RLDL terminates the algorithm after 4
iterations with a minimum error of 3.91e-9.

Previous works ([7] and [2]) suggested much larger values of the regular-
ization parameter but our experience with using the recommended values
was that the convergence of the method was extremely slow. For example,
the previous example is repeated with µ = 1e-10. The larger regularization
parameter keeps the condition number of the regularized system under 1012.
However, the improvement in conditioning is at the expense of convergence.
With this value of the shape parameter the difference (17) is now 1.3e-27,
so the initial solution is now further away from the exact solution than if
a larger regularization parameter had been used. The spectral radius of

14



0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

m
a
x
im

u
m
 e
rr
o
r

RLDL0

LDL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

κ
(B

)

κ(B)

κ(C)

Figure 6: Interpolation with N = 55 non-uniformly spaced centers with
location given by equation (25). The interpolant is evaluated at 175 evenly
spaced centers. With a regularization parameter of µ =5e-15 the smallest
RLDL0 error is 2.02e-9 at ε = 1.17.

µC−1 is 0.9999999999, so in addition to being further away from the desired
solution, the convergence will be very slow. The results after 10 and 1000 it-
erations are shown in figure 4. After 10 iterations the smallest error is 6.53-8
and after 1000 iterations the minimum error is 1.24e-8. With µ = 1e-10 the
error is larger after 1000 iterations than it was after after zero iterations
with RSPD0 with µ = 5e-15.

The example of this section is repeated one more time with unequally
spaced centers with locations given by

xk = sin−1 (−γ cos(kπ/(N − 1))) / sin−1 (γ) (25)

with γ = 0.99 and for k = 0, 1, . . . , N − 1.. The output of the RLDL0
algorithm with µ = 5e-15 is shown in the left image of figure 6 and the
condition number of the system matrix and the regularized matrix C are
shown in the right image of the figure. The smallest error of 2.02e-9 is at
ε = 1.17.

As the number of centers increase and/or the shape parameter decreases,
RBF interpolants with equally spaced centers and constant shape parame-
ters suffer from the Runge phenomena in a similar manner as their closely
related global polynomial interpolants do ([31], [30]). For example, with a

15



fixed value of the shape parameter, a RBF interpolant of a smooth func-
tion on a closed interval will not converge uniformly as N → ∞ unless the
function is analytic in a larger region of the complex plane in which the
shape of the region depends on the shape parameter and on the location of
the centers. Clustering centers more densely near the ends of the interval
avoids this difficulty, but unfortunately, analytic expressions for the location
of such centers are not known and they need to be computed for each RBF
and shape parameter.

Reference [30] shows that a good set of centers for avoiding the Runge
phenomena while interpolating the function

f(x) = sin(10x) (26)

on the interval [−1, 1] with the IQ RBF and shape parameter ε = 1.0 is
given by equation (25) with γ = 0.9. Figure 7 displays the maximum error
of interpolating the function with an increasing number of centers using
both LDL and RLDL0 in double precision (in which numbers are accurately
represented to approximately fifteen decimal places). In double precision the
convergence trend is not able to continue beyond N = 25. Beyond this point
the LDL error curve begins to oscillate and increase while the RLDL error
curve remains approximately constant. The LDL calculation is repeated in
extended precision with 63 decimal places of accuracy and the convergence
trend continues while avoiding the Runge phenomena.

5 Numerical examples

In this section the RSPD solvers are used in 2d scattered data interpolation,
to form differentiation matrices for the solution of time-dependent PDE
problems, and are bench marked for efficiency.

5.1 Franke function

The Franke function

f(x, y) =
3

4
e[

−1

4
(9x−2)2− 1

4
(9y−2)2] +

3

4
e[

−1

49
(9x+1)2− 1

10
(9y+1)2]

=
1

2
e[

−1

4
(9x−7)2−−1

4
(9y−3)2] −

1

5
e[−(9x−4)2−(9y−7)2] (27)

has often been used as a test function for RBF methods since it was first in-
troduced in a paper [14] on scattered data approximation methods in 1982.
The function is interpolated over a range of shape parameters using 618

16



10 15 20 25 30 35 40 45 50
N

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

m
a
x
im

u
m
 e
rr
o
r

LDL

RLDL

LDLx

Figure 7: LDL, RLDL0 (with µ = 5e-15), and LDL with extended precision
(decimal precimal of 63) floating point arithmetic (LDLx) for interpolating
function (26) over a range of N and a fixed shape parameter of ε = 1.

scattered centers in a quarter circular domain shown in figure 8. The in-
terpolant is evaluated at 900 points within the domain. The left image of
figure 9 compares the accuracy from using a LDL solver and the RLDL0
solver. The system matrix is not NSPD for ε < 4.475 and a LL factoriza-
tion would fail in this range. With a regularization parameter of µ =1e-14
the RLDL0 solver has a non-oscillatory error curve over the entire range of
shape parameter used and is about two decimal places more accurate in the
shape parameter region where the system matrix is severely ill-conditioned.

5.2 Efficiency of RSPD solver for RBF systems

Table 1 lists the execution time in seconds of six Matlab and seven Python
implementations of methods for solving 1000 IQ RBF systems with N =
500. All the reported results were carried out on a computer running 64-bit
Windows 7 and that was equipped with an Intel I7-950 quad-core @ 3.07
GHz CPU and 12 GB RAM. The times in the middle column result from
solving systems with matrices that are NSPD while the results in the right
column are from systems with matrices that are not NSPD. The algorithms
listed in the left column that begin with a M are Matlab functions and
that begin with a P are Python functions. The particular algorithms and

17



−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

Figure 8: 618 scattered centers on a non-square domain.

function calls are:

M-backslash The backslash operator or equivalently the function mldi-
vide. A black box solver that attempts a Cholesky factorization of a
symmetric matrix. If the factorization fails it determines the matrix
is not SPD and instead uses LU decomposition with partial pivoting.

M-LL Cholesky factorization via the function chol.

M-LDL Block LDLT factorization for symmetric indefinite matrices by the
function LDL.

M-RLL0 The method of diagonal increments. Cholesky factorization of
B+µI via the chol function and then the factorization is used to solve
(B + µI)a = f .

M-RLL1 Solution of the regularized system (16) via the chol function and
one iteration of (23).

M-RLL Solution of the regularized system (16) via the chol function and
a number of iterations of (23) determined by the stopping criteria of
section 4.1.

18



0 1 2 3 4 5 6
shape parameter

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101
m
a
x
im

u
m
 e
rr
o
r

RLDL0

LDL

0 1 2 3 4 5 6
shape parameter

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

κ
(B

)

κ(B)

κ(C)

Figure 9: Interpolation of the Franke function (27). Left: The minimum
RLDL0 error with µ =1e-14 is 1.73e-07 at the shape parameter 2.62. Right:
The condition number of the system matrix B and of the regularized matrix
C.

P-solve The function SciPy.linalg.solve. By default it performs LU factor-
ization with partial pivoting. It accepts an argument to tell the func-
tion that the matrix is SPD which causes the function to use Cholesky
factorization instead.

P-LL Cholesky factorization via the functions SciPy.linalg.cho factor and
SciPy.linalg.cho solve.

P-LL* Cholesky factorization via the functions SciPy.linalg.lapack.dpotrf
and SciPy.linalg.lapack.dpotrs. The same as the algorithms in P-LL
but without the overhead of error checking.

P-LDL LDL factorization implemented in C and wrapped in Python. The
method is not implemented using BLAS subroutines and thus not op-
timized for multi-core CPUs.

P-RLL0 The method of diagonal increments. Cholesky factorization of
B + µI via SciPy.linalg.lapack.dpotrf and solution of (B + µI)a = f
with SciPy.linalg.lapack.dpotrs.

P-RLL1 Cholesky factorization via the function SciPy.linalg.lapack.dpotrf

19



ε = 25, NSPD ε = 15, not NSPD

M-backslash 3.26 11.41
M-LL 2.84 n.a.
M-LDL (block) 18.61 28.3
M-RLL0 3.61 3.61
M-RLL1 4.11 4.11
M-RLL 5.04 5.04

P-solve 3.52 5.09
P-LL 4.44 n.a.
P-LL* 2.83 n.a.
P-LDL 38.08 38.08
P-RLL0 3.06 3.06
P-RLL1 3.25 3.25
P-RLL 3.71 3.71

Table 1: Time in seconds needed to solve 1000 500× 500 linear systems.

and one iteration of (23) using SciPy.linalg.lapack.dpotrs to solve the
system.

P-RLL Cholesky factorization via the functions SciPy.linalg.lapack.dpotrf
and SciPy.linalg.lapack.dpotrs and a number of iteration of (23) de-
termined by the stopping criteria of section 4.1.

Without optimized LDL factorizations available either in Matlab or
SciPy, the Cholesky factorization remains the most efficient solver in both
packages. Both Matlab and SciPy wrap the LAPACK functions dpotorf and
dpotrs for their Cholesky functions. The Matlab block LDL function and
the LDL function coded in C and wrapped in Python were the slowest algo-
rithms. The Matlab and SciPy Cholesky functions are based on basic linear
algebra subroutines (BLAS) from the highly optimized Math Kernel Library
(MKL) [21] which are able to take advantage of multicore CPUs. The P-
LDL function coded in C does not use BLAS routines and runs considerably
slower as it uses only one CPU thread.

Reference [7] reports that their RLL implementation is five percent
slower than M-backslash. The regularization parameter choice and the stop-
ping criteria used here lead to a different conclusion. When the system is
NSPD, the RSPD solvers are either slightly more or less efficient than M-
backslash, depending on whether the Matlab or Python implementation is

20



considered. When the system is not NSPD and regularization is required,
all the RSPD solvers implemented in either language are both more efficient
and more accurate than M-backslash. In particular, P-RLL0 is over four
times as fast.

In many RBF related works, such as in this work, plots are made over a
range of shape parameters and computations are made with NSPD matrices
and matrices that are not NSPD. M-backslash is perhaps the most popular
algorithm used for such a calculation, but the RSPD solvers that have been
described in this work are more accurate and more efficient choices.

5.3 Comparison to the truncated SVD

The singular value decomposition (SVD) A = UΣV T of an invertible square
matrix is known as a very stable factorization for use in solving linear sys-
tems [15]. However, the dominant term in the SVD flop count is 2N3 which
is six times larger than that of both the LL and LDL factorizations. The
diagonal matrix Σ = diag(σ1, σ2, . . . , σN ) contains the singular values of the
matrix that satisfy σ1 ≥ σ2 ≥ · · · ≥ σN > 0. A simple regularization method
that is often effective for solving extremely ill-conditioned linear systems is
the truncated SVD (TSVD) [17]. The TSVD disregards singular values that
are less than a regularization parameter µ. The logic behind the truncation
is that very small singular values may not be calculated accurately. The
TSVD [4] and its variants [26, 5, 41] have been employed in the implemen-
tation of RBF methods. Here, the experience of [37] where the TSVD was
found not to be a particularly effective solver for use in RBF methods is
echoed as well as the conclusion of reference [4] where it was stated that the
TSVD “cannot be applied in general to large scale problems, because the
technique that eliminates the singular values simultaneously removes their
respective singular eigenvectors, degrading the basis of the space.”

To illustrate these points the Franke function interpolation problem from
section 5.1 is repeated using the TSVD. In the left image of figure 10 the
error versus the shape parameter is shown for three values of the regular-
ization parameter and for the full SVD. For this problem, a value of the
regularization parameter that resulted in better accuracy than the full SVD
could not be found. In the right image of the figure, the accuracy of LDL,
RLDL0, and the SVD are compared. The SVD is more accurate than LDL,
but the accuracy of RLDL0 and the SVD are similar and RLDL0 is slightly
more accurate when the system matrix is very ill-conditioned. In this ex-
ample, RLDL0 performs slightly better than the SVD while being six times
more efficient.

21



0 1 2 3 4 5 6
shape parameter

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

m
a
x
 e
rr
o
r

5e-12
5e-13
5e-14
0

0 1 2 3 4 5 6
shape parameter

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

m
a
x
 e
rr
o
r

LDL
RLDL0
SVD

Figure 10: Repetition of the Franke function interpolation problem that
is illustrated in figure 9 using the truncated SVD. Left: TSVD using four
different regularization parameters. Right: accuracy of LDL, RLDL0, and
the SVD.

5.4 Differentiation matrices and eigenvalue stability

RBF methods for time-dependent hyperbolic PDEs are plagued by eigen-
value stability issues which have been examined in several works [9, 32, 34].
Frequently, the discretized linear operators have eigenvalues with large pos-
itive real parts which prevent stable time integration. The problem is par-
ticularly severe [34] with small shape parameters for which the methods are
most accurate but for which the system matrices are severely ill-conditioned
and are not NSPD.

Figure 11 compares the accuracy of LU factorization with partial pivot-
ing and RLDL0 in calculating the derivative of the interpolant from figure
6. The smallest RLDL0 error is 4.45e-7 at ε = 1.18. With this value of the
shape parameter, the space derivative of the 1d advection equation

∂u

∂t
−

∂u

∂x
= 0 (28)

is discretized on the interval Ω = [−1, 1] with boundary condition u(1, t) = 0.
The boundary condition is enforced by setting the last row of the differen-
tiation matrix (10) (DM) to zero. Figure 11 shows the eigenvalues of the
DM. In the left image of the figure the DM was formed using RLDL0 with
µ = 5e-15. The largest real part of any eigenvalue is 3.2e-2. In the right

22



0.5 1.0 1.5 2.0 2.5 3.0
shape parameter

10-7

10-6

10-5

10-4

10-3

m
a
x
im

u
m
 e
rr
o
r

LU

RLDL0

Figure 11: Derivative of function (14) calculated with LU factorization and
RLDL0 with µ = 5e-15. The smallest RLDL0 error is 4.45e-7 at ε = 1.18.

image of the figure the DM was formed using LU factorization with partial
pivoting. The largest real part of any eigenvalue is 47.2.

Figure 13 plots the accuracy of RBF approximation of the differential
operator L = ∂

∂x +
∂
∂y applied to the function (27) over a range of the shape

parameter using LU factorization and the RLL1 algorithm with µ = 5e-13
to evaluate the linear systems. The domain and centers are in figure 8.
The differentiation matrix is modified to enforce zero Dirichlet boundary
conditions u(0, y, t) = 0 and u(x, 0, t) = 0 for the two dimensional advection
equation

∂u

∂t
−

∂u

∂x
−

∂u

∂y
= 0. (29)

The boundary conditions are enforced by zeroing rows corresponding to
boundary centers.

The right image in figure 9 shows that the system matrix B is severely
ill-conditioned at shape parameter ε = 1.0. Figure 14 shows the eigenvalues
of the DM for the advection equation (29). In the right image of the figure
the DM formed with LU factorization has eigenvalues with large positive
real parts. The eigenvalues of the DM formed using RLL1 with µ = 5e-13
are in the left image of the figure. The largest positive real part of the
eigenvalues is 1.27e-3.

23



−8 −7 −6 −5 −4 −3 −2 −1 0
real(ew)

−60

−40

−20

0

20

40

60
im

a
g
(e
w
)

−20−10 0 10 20 30 40 50 60
real(ew)

−80

−60

−40

−20

0

20

40

60

80

im
a
g
(e
w
)

Figure 12: Eigenvalues of the discretized space operator of equation (28).
The derivative matrix was formed using two different algorithms. Left:
RLDL0 with µ = 5e-15. Right: LU factorization with partial pivoting.

RSPD methods do not necessarily produce DMs with eigenvalues that all
have non-positive real parts. However, the positive real parts are tiny when
compared to DMs produced with a LU factorization without regularization.
The RSPD DMs may be used to accurately integrate time-dependent PDEs
over short to moderate time intervals. The RSPD DMs are certainly a better
starting point for use with hyper-viscosity methods [9] than are DMs formed
using LU factorization via the M-backlash operator as is often done.

6 Conclusions

Many RBFs, such as the IQ that has been used throughout, have a system
matrix that is symmetric positive definite. The standard algorithm for fac-
torizing a SPD matrix is the LL factorization. The uncertainty principle
that is associated with the RBF-direct approach dictates that the approach
is most accurate when the system matrix is highly ill-conditioned. Highly
ill-conditioned system matrices associated with accurate RBF methods are
likely not NSPD and an attempted LL factorization fails. This either forces
the use of a larger shape parameter and overall less accuracy or the use of a
computationally more expensive LU factorization. LDL seems like a more
appropriate factorization to use with RBF methods, but optimized LDL
functions are currently not available in major scientific software packages.

The shape parameter range for which the LL factorization is applicable

24



0 1 2 3 4 5 6
shape parameter

10-5

10-4

10-3

10-2

10-1

100

101

102

m
a
x
im

u
m
 e
rr
o
r

LU
RLL1

Figure 13: RBF approximation of the differential operator L = ∂
∂x + ∂

∂y
applied to the function (27).

can be significantly extended via regularization techniques. The recom-
mended regularization parameter range for two regularization techniques,
the method of diagonal increments and Riley’s method, has been made as
5e-13 ≤ µ ≤ 5e-15. Criteria for stopping the Riley’s iteration with the
recommended range of regularization parameter have been described. Sev-
eral implementations of the RSPD methods have been described: RSPD0,
RSPD1, and RSPD. RSPD0, or the method of diagonal increments, is par-
ticularly simple and effective. The RSPD0 method has essentially the same
flop count as a LL factorization but it is more accurate and it is applicable
with very ill-condition matrices. The RSPD0 method deserves consideration
as the standard method for linear systems arising from RBF methods. If
more accuracy is desired than RSPD0 provides, a slight improvement in ac-
curacy is often possible via the RSPD1 or RSPD algorithms at the expense
of a slightly higher flop count.

A large amount of research in the RBF field has been done with the M-
backslash algorithm as a primary tool. In this case, an ill-conditioned RBF
system matrix is factorized with LU factorization that does not consider
the symmetry of the matrix and that uses twice as many flops as a LL
factorization. The RLL0 algorithm is as many as four times more efficient,
as well as more accurate, than is M-backslash when a theoretically SPD
matrix that is not NSPD is factorized. Finally, the eigenvalue stability
properties of RBF DMs for time-dependent hyperbolic PDEs formed with
the RSPD0 or RSPD1 methods are vastly better than the properties of DMs

25



−30 −25 −20 −15 −10 −5 0
real(ew)

−60

−40

−20

0

20

40

60
im

a
g
(e
w
)

−300−250−200−150−100−50 0 50
real(ew)

−80

−60

−40

−20

0

20

40

60

80

im
a
g
(e
w
)

Figure 14: Eigenvalues of the RBF space discretization of equation (29) with
ε = 1.0. Left: RLL1 with µ =5e-13. Right: LU factorization.

formed using M-backslash.
The Matlab and Python computer code used to produce the examples

is available on the author’s web site [36].

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, third edition, 1997. 3

[2] A. Bassi. A Scilab Radial Basis Function toolbox. Master’s thesis,
University of Padova, 2012. 1, 4, 4.1, 4.1

[3] M. D. Buhmann. Radial Basis Functions. Cambridge University Press,
2003. 2

[4] D. A. Cervantes Cabrera, P. Gonzlez-Casanova, C. Gout, L. Hctor Ju-
rez, and L. Rafael Resndiz. Vector field approximation using radial
basis functions. Journal of Computational and Applied Mathematics,
pages 163–173, 2013. 5.3

[5] A. Emdadi, E. J. Kansa, N. Ali Libre, M. Rahimian, and M. Shekarchi.
Stable PDE solution methods for large multiquadric shape parameters.
Computer Modeling In Engineering And Sciences, 25(1):23–42, 2008.
5.3

26



[6] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World
Scientific, 2007. 2, 2

[7] G. E. Fasshauer. Tutorial on meshfree approximation methods with
Matlab. Dolomite Research Notes on Approximation, 1, 2008. 1, 4, 4.1,
4.1, 5.2

[8] G. E. Fasshauer and M. McCourt. Stable evaluation of Gaussian RBF
interpolants. SIAM Journal of Scientific Computing, 34(2):737–762,
2012. 1

[9] B. Fornberg and E. Lehto. Stabilization of RBF-generated finite differ-
ence methods for convective PDEs. Journal of Computational Physics,
230:2270–2285, 2011. 5.4, 5.4

[10] B. Fornberg, E. Lehto, and C. Powell. Stable calculation of gaussian-
based rbf-fd stencils. Computers and Mathematics with Applications,
65:627–637, 2013. 1

[11] B. Fornberg and C. Piret. A stable algorithm for flat radial basis func-
tions on a sphere. SIAM Journal on Scientific Computing, 30:60–80,
2007. 1

[12] B. Fornberg and G. Wright. Stable computation of multiquadric inter-
polants for all values of the shape parameter. Computers and Mathe-
matics with applications, 48:853–867, 2004. 1

[13] B. Fornberg and J. Zuev. The runge phenomenon and spatially variable
shape parameters in rbf interpolation. Computers and Mathematics
with Applications, 54:379–398, 2007. 2

[14] R. Franke. Scattered data interpolation: Tests of some methods. Math-
ematics of Computation, pages 181–200, 1982. 5.1

[15] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins
Press, third edition, 1996. 3, 5.3

[16] L. Guttman. Enlargement methods for computing the matrix inverse.
The Annals of Mathematical Statistics, 17(3):336–343, 1946. 4

[17] P. C. Hansen. The truncated SVD as a method for regularization. BIT,
27(4):534–553, 1987. 5.3

[18] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of
matrices. SIAM Review, 23(2):53–60, 1981. 4

27



[19] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2002. 1, 3

[20] C.-S. Huang, C.-F. Leeb, and A.H.-D. Cheng. Error estimate, optimal
shape factor, and high precision computation of multiquadric colloca-
tion method. Engineering Analysis with Boundary Elements, 31:614–
623, 2007. 1

[21] Intel. Math kernel library. http://developer.intel.com/software/products/mkl/.
5.2

[22] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. 1

[23] E. J. Kansa. Multiquadrics - a scattered data approximation scheme
with applications to computational fluid dynamics I: Surface approxi-
mations and partial derivative estimates. Computers and Mathematics
with Applications, 19(8/9):127–145, 1990. 2

[24] E. Larsson and E. Hehto. Stable computation of differentiation matrices
and scattered node stencils based on gaussian radial basis functions.
SIAM Journal on Scientific Computing, 35:A2096–A2119, 2013. 1

[25] S. Li and J. P. Boyd. Symmetrizing grids, radial basis functions, and
Chebyshev and Zernike polynomials for the d4 symmetry group; inter-
polation within a squircle, part i. Journal of Computational Physics,
258:931–947, 2014. 1

[26] N. Ali Libre, A. Emdadi, E. J. Kansa, M. Rahimian, and M. Shekarchi.
A stabilized RBF collocation scheme for Neumann type boundary value
problems. Computer Modeling In Engineering And Sciences, 24(1):61–
80, 2008. 5.3

[27] MATLAB. version 8.2.0 (R2013b). The MathWorks Inc., Natick, Mas-
sachusetts. 1

[28] M. McCourt. A stochastic simulation for approximating
the log-determinant of a symmetric positive defnite matrix.
http://www.thefutureofmath.com/mathed/logdet.pdf. 1, 4,
4.1

[29] W. Piegorsch and G. Casella. The early use of matrix diagonal incre-
ments in statistical problems. SIAM Review, 31:428–434, 1989. 4

28

http://developer.intel.com/software/products/mkl/
http://www.thefutureofmath.com/mathed/logdet.pdf


[30] R. Platte. How fast do radial basis function interpolants of analytic
functions converge? IMA Journal of Numerical Analysis, 31(4):1578–
1597, 2010. 4.1

[31] R. Platte and T. Driscoll. Polynomials and potential theory for gaus-
sian radial basis function interpolation. SIAM Journal of Numerical
Analysis, 43(2):750–766, 2005. 4.1

[32] R. Platte and T. Driscoll. Eigenvalue stability of radial basis functions
discretizations for time-dependent problems. Computers and Mathe-
matics with Applications, 51:1251–1268, 2006. 5.4

[33] J. D. Riley. Solving systems of linear equations with a positive definite,
symmetric, but possibly ill-conditioned matrix. Mathematical Tables
and Other Aids to Computation, 9(51):96–101, 1955. 4, 4, 4.1

[34] S. A. Sarra. A numerical study of the accuracy and stability of sym-
metric and asymmetric rbf collocation methods for hyperbolic PDEs.
Numerical Methods for Partial Differential Equations, 24(2):670 – 686,
2008. 5.4

[35] S. A. Sarra. Radial basis function approximation methods with ex-
tended precision floating point arithmetic. Engineering Analysis with
Boundary Elements, 35(1):68–76, 2011. 1

[36] S. A. Sarra. Computer code that accompanies this manuscript.
http://www.scottsarra.org/math/papers/RSPD.zip, 2013. 6

[37] S. A. Sarra and E. J. Kansa. Multiquadric radial basis function ap-
proximation methods for the numerical solution of partial differential
equations. Advances in Computational Mechanics, 2, 2009. 2, 5.3

[38] S. A. Sarra and D. Sturgill. A random variable shape parameter strategy
for radial basis function approximation methods. Engineering Analysis
with Boundary Elements, 33:1239–1245, 2009. 2

[39] R. Schaback. Error estimates and condition numbers for radial ba-
sis function interpolation. Advances in Computational Mathematics,
3:251–264, 1995. 2

[40] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, first
edition, 1997. 3

29



[41] K. Volokh and O. Vilnay. Pin-pointing solution of ill-conditioned square
systems of linear equations. Applied Mathematics Letters, 13:119–124,
2000. 5.3

[42] H. Wendland. Scattered Data Approximation. Cambridge University
Press, 2005. 2, 2, 2

30


	Introduction
	RBF Interpolation and Differentiation
	Direct methods for SPD systems
	Regularized SPD (RSPD) matrix factorizations 
	regularization parameter choice and stopping criteria

	Numerical examples
	Franke function
	Efficiency of RSPD solver for RBF systems
	Comparison to the truncated SVD
	Differentiation matrices and eigenvalue stability

	Conclusions

