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Abstract

Differentiation matrices associated with radial basis function (RBF)
collocation methods often have eigenvalues with positive real parts of
significant magnitude. This prevents the use of the methods for time-
dependent problems, particulary if explicit time integration schemes
are employed. In this work, accuracy and eigenvalue stability of sym-
metric and asymmetric RBF collocation methods are numerically ex-
plored for some model hyperbolic initial boundary value problems in
one and two dimensions.

keywords: Radial Basis Functions, Numerical Partial Differential Equa-
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1 Introduction

Over the last several decades radial basis functions (RBFs) have been found
to be successful for the interpolation of smooth functions on scattered data
sets. More recently, the RBF methods have emerged as an important type
of method for the numerical solution of partial differential equations (PDEs)
[1]. Most PDE results have concerned elliptic PDEs for which symmetric
[2] and asymmetric collocation methods [1] are well developed. Recently,
the connection between the RBF collocation methods and pseudospectral
methods has been described [3].

To date, RBF collocation methods for time-dependent PDE problems
have not become as accepted as RBF methods for elliptic PDEs. The
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Name of RBF Definition
Multiquadric (MQ) φ(r, c) =

√
1 + c2r2

Inverse Quadratic (IQ) φ(r, c) = 1/(1 + c2r2)
Gaussian (GA) φ(r, c) = e−c2r2

Inverse Multiquadric (IMQ) φ(r, c) = 1/
√

1 + c2r2

Table 1: Global, infinitely smooth RBFs.

major obstacle has been eigenvalue stability for explicit time integration
schemes. The spectrum of differential operators discretized by RBF colloca-
tion methods often contain eigenvalues with large positive real parts which
makes explicit time integration schemes explosively unstable. The problem
is most severe with scattered, unstructured center locations [4]. To date,
little progress has been made in understanding eigenvalue stability of RBF
collocation methods. Only recently in [5] were stable center locations for
the asymmetric collocation method identified for the Gaussian RBF using
potential theory in the specialized cases of 1d and 2d tensor product grids.
In this work we seek more generalized results which apply to scattered cen-
ter locations in complex domains. We focus not on identifying stable center
locations, but on forming differentiation matrices with stable spectra on any
set of centers.

For time dependent PDEs we take a method of lines approach where
the PDE is discretized in space with RBFs and the resulting system of or-
dinary differential equations (ODEs) is advanced in time with an explicit
ODE method. As an ODE method, we use a low dispersion, low dissipa-
tion, fourth-order, six stage explicit Runge-Kutta (LDDRK46) method [6].
LDDRK46 is commonly used to accurately advance hyperbolic PDEs over
long time periods in applications such as aeroacoustics. For the time in-
tegration to be stable, LDDRK46 requires that the discretized PDE has a
spectrum for which all real parts of its eigenvalues are nonpositive. We call
such a spectrum a stable spectrum. The stable spectrum can be scaled by
an appropriate time step ∆t so that the spectrum fits in the stability region
of the RK method. The stability region of LDDRK46 is shown in figure 3.

Our choice of RBFs is restricted to global infinitely differentiable RBFs
that have a shape parameter and that are positive definite, or in the case of
the MQ conditionally positive definite of order one. Some popular choices
are listed in table 1. The results also apply to other conditionally positive
definite RBFs if some additional notational effort is taken.
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Associated with RBF methods is an uncertainty principle [7] that states
that the methods can not be accurate and well conditioned at the same
time. The conditioning of the methods is measured by the matrix condition
number

κ(B) = ‖B‖∥∥B−1
∥∥ = σmax/σmin (1)

where σ are the singular values of the matrix B. For the RBFs in table
1, small shape parameters produce the most accurate results, but are also
associated with a poorly conditioned system matrix. For fixed values of the
shape parameter, the conditioning of the system matrix deteriorates as the
separation distance between centers, defined as

qΞ =
1
2

min
i 6=j

‖ξi − ξj‖2 , (2)

decreases. Although RBF methods are applicable for arbitrary, randomly
scattered sets of centers, the best results are usually obtained with sets of
centers with a small fill distance

hΞ = sup
ξ∈Ξ

min
ξj∈Ξ

‖ξ − ξj‖ . (3)

This is since error estimates are often stated in terms of the decay of the fill
distance [8].

2 RBF Collocation Methods

Let Ξ be a finite distinct set of points x ∈ Rd, which are traditionally called
centers. Let NI represent the number of centers, xI , at which the PDE is
enforced and NB the number of centers, xB, at which boundary conditions
are enforced. The total number of centers is N = NI + NB. Throughout,
we order the centers Ξ = [xI ; xB].

Let L be a linear differential operator and consider the time dependent
PDE

∂u

∂t
= Lu, x ∈ xI (4)

with appropriate boundary conditions applied at x ∈ xB. Spatial derivatives
can be approximated by multiplying by the differentiation matrix as

Lu ≈ Du

where D will be defined below. The differentiation matrix may discretize a
single spatial derivative or an entire differential operator.

3



Two RBF collocation approaches exist, asymmetric and symmetric. Both
can be formulated in term of a system matrix Hm which discretizes the dif-
ferential operator and a evaluation matrix Bm consisting of the functions
serving as the basis of the approximation space. The m subscript refers to
the particular formulation, m = a for the asymmetric method and m = s for
the symmetric method. The methods derive their names from the fact that
the symmetric method has a symmetric system matrix while the asymmetric
system matrix is in general not symmetric.

2.1 Asymmetric

The asymmetric method approximates the unknown PDE solution u by

u(x) =
N∑

j=1

λjφ(‖x− xj‖2), x ∈ Rd. (5)

For the PDE (4) we have the approximation

Lu(xi) =
N∑

j=1

λjLφ(‖xi − xj‖2), i = 1, . . . , NI , (6)

and where boundary conditions are enforced we have

u(xi) =
N∑

j=1

λjφ(‖xi − xj‖2), i = NI + 1, . . . , N. (7)

From equations (5), (6), and (7) it follows that the asymmetric differentia-
tion matrix is

Da = HaB
−1
a =

[
Lφ
φ

] [
φ

]−1 (8)

where the two blocks of Ha are generated as

(Lφ)i,j = Lφ(‖xi − xj‖2), i = 1, . . . , NI j = 1, . . . , N

(φ)i,j = φ(‖xi − xj‖2), i = NI + 1, . . . , N j = 1, . . . , N

and Ba is defined by

(φ)i,j = φ(‖xi − xj‖2), i, j = 1, . . . , N.
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For all positive definite RBFs, as well as the conditionally positive definite
MQ, the evaluation matrix Ba is known to be invertible [9]. Thus we can
always form Da.

The asymmetric method discretizes steady problems

Lu = f (9)

as u = BaH
−1
a f where the matrix Ha is referred to as a Kansa matrix.

Counter examples have been given to show that a Kansa matrix may not
be invertible [10]. However, extensive computational evidence indicates that
the matrix is very rarely singular and the asymmetric method has become
well-established for steady problems.

2.2 Symmetric

The symmetric method approximates the unknown PDE solution u by

u(x) =
N−NB∑

j=1

λjL
∗φ(‖x− xj‖2) +

N∑

N−NB+1

λjφ(‖x− xj‖2), x ∈ Rd. (10)

The operator L∗ is the operator L applied to the second argument xj . For
any x and y, L∗φ(‖x− y‖2) and Lφ(‖x− y‖2) are equal in absolute value.
In particular, if L is an odd order differential operator L = −L∗ and if L is
of even order L = L∗.

For the PDE (4), at non-boundary points the symmetric method ap-
proximation is

Lu(xi) =
N−NB∑

j=1

λjLL∗φ(‖xi − xj‖2) +
N∑

N−NB+1

λjLφ(‖xi − xj‖2), x ∈ Rd,

(11)
and at points where boundary conditions are enforced

u(xi) =
N−NB∑

j=1

λjL
∗φ(‖xi − xj‖2)+

N∑

N−NB+1

λjφ(‖xi − xj‖2), i = NI+1, . . . , N.

(12)
It follows from equations (10), (11), and (12) that the asymmetric differen-
tiation matrix is

Ds = HsB
−1
s =

[
LL∗φ Lφ
L∗φ φ

] [
L∗φ φ

]−1 (13)
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RBF max(κs) max(κa)?

MQ 1e14 1e10
IQ 1e13 1e9

IMQ 1e13 1e9
GA 1e11 1e7

Table 2: Stable condition number bounds for the symmetric and asymmet-
ric methods for the 1d advection example for five N = 100 center distribu-
tions: equidistant, CPS (16), mapped CPS (17), RBF, and random. (? For
randomly located centers, the asymmetric method does not have a stable
spectrum for any condition number.)

where the blocks of Hs are

(LL∗φ)i,j = LL∗φ(‖xi − xj‖2), i = 1, . . . , NI j = 1, . . . , NI

(Lφ)i,j = Lφ(‖xi − xj‖2), i = 1, . . . , NI j = NI + 1, . . . , N

(L∗φ)i,j = L∗φ(‖xi − xj‖2), i = NI + 1, . . . , N j = 1, . . . , NI

φi,j = φ(‖xi − xj‖2), i = NI + 1, . . . , N j = NI + 1, . . . , N

and the blocks of Bs are

(L∗φ)i,j = L∗φ(‖xi − xj‖2), i = 1, . . . , N j = 1, . . . , NI

φi,j = φ(‖xi − xj‖2), i = 1, . . . , N j = NI + 1, . . . , N.

Unlike the asymmetric differentiation matrix, it can not be shown that the
symmetric differentiation matrix Ds is well defined as the evaluation matrix
Bs is a Kansa matrix. However, like the asymmetric method for steady
problems, extensive computational evidence indicates that Bs is very rarely
singular when boundary conditions are properly applied.

The symmetric method discretizes the steady problem (9) as u = BsH
−1
s f .

Unlike the steady asymmetric method, the symmetric method can ensure
the solution of steady problems as Hs is known to be invertible [2].

3 Numerical Examples

3.1 One Dimension

Consider the advection equation

∂u

∂t
− ∂u

∂x
= 0 (14)
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on the interval Ω = [−1, 1] with boundary condition u(1, t) = 0. For this
example, L = ∂

∂x , L∗ = − ∂
∂x , and LL∗ = − ∂2

∂x2 . A Matlab function that
produces the MQ differentiation matrices Da and Ds is in figure 12. In order
to enforce the zero Dirichlet boundary condition at x = 1 the elements in
the last row and last column of the differentiation matrix are set to zero.

First, the spectra of the derivative matrices Da and Ds are examined on
five sets of N = 100 center locations. The center locations are:

1. equidistant

xi = −1 +
2i

N
, i = 0, 1, . . . , N (15)

2. the standard Chebyshev pseudospectral (CPS) grid

xi = − cos(iπ/N), i = 0, 1, . . . , N (16)

3. the mapped Chebyshev pseudospectral (mapped CPS) grid

xi =
arcsin [−γ cos(iπ/N)]

arcsin γ
, i = 0, 1, . . . , N and 0 < γ < 1 (17)

4. a “RBF grid” consisting of 86 equidistant interior centers and 7 mildly
clustered centers, as specified by (17), near each boundary, and

5. random center locations generated by the following Matlab script:

x = rand(100,1); x = sort(x);
x(1) = 0; x(end) = 1;
x = 2*x - 1; % [0,1] -> [-1,1].

The CPS grid densely clusters centers around the endpoints of Ω while
the mapped CPS grid clusters points around the boundary points, but less
densely. The RBF grid clusters centers around the boundaries but maintains
uniform interior resolutions. This is unlike the pseudospectral grids and
illustrates the flexibility of the RBF methods. Random center locations are
not recommended for computation, but we have included random grids as a
severe test of the methods.

It is observed that the eigenvalue stability of the methods is related to
the condition number of the evaluation matrix. Bounding κ(B) above results
in D with a stable spectrum. Table 2 lists the condition number bounds for
the evaluation matrix B that result in differentiation matrices with stable
spectra for N = 100 and various RBFs on the five types of center locations.
One thousand random sets of centers were tests.
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As dictated by the uncertainty principle, the condition number should
be kept close to the upper bound to ensure maximum accuracy. The stable
condition number bound is dependent on N, the RBF, and the type of collo-
cation method. The dependence on N is illustrated in left image of figure 1
for the MQ RBF and equidistant centers. From an implementation point of
view, it would be more valuable to know the value of the shape parameter or
the minimum separation distance (2) at which instability arises rather than
a condition number bound. However, we have only be able to observe such
a relationship in the specialized case of equally spaced centers for which the
condition number bound is equivalent to holding the product c qΞ constant.
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Figure 1: Left: Upper bound of the stable condition number range of the
MQ Ba and Bs for equation (18) with increasing N equidistant center distri-
butions. Right: Maximum error from equidistant center MQ approximation
of equation (18) at t = 5 for increasing N.

Decreasing the condition number significantly below the stability bound
still results in D with a stable spectrum, but the at the expense of accuracy in
both methods. For a fixed set of centers, the size of the spectral radius versus
the magnitude of κ(B) differs in the two methods. As κ(Ba) increases (c
decreases) the spectral radius of Da increases. However, for the symmetric
method, as κ(Bs) increases the spectral radius of Ds decreases. This is
illustrated in figures 2 and 3 for N = 100 equally spaced centers. A similar
result was observed for the asymmetric method for a discretized advection
operator without boundary conditions in [11] where the spectral radius of
Da was shown to grow with decreasing c (which corresponds to increasing
κ(Ba)).
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Figure 2: Spectral radius of D versus κ(B) for the first order PDE 18.

To assess the accuracy of the methods, consider equation (18) on the
interval Ω = [−1, 1]. The initial condition and Dirichlet boundary condition
at x = 1 are specified using the exact solution u(x, t) = cos(π(x+ t)). In the
right image of figure 1 the convergence in the max norm of the symmetric and
asymmetric MQ methods is examined on equidistant centers. The condition
number upper bounds from the left image of figure 1 are used. For this
example, the symmetric method exhibits both better accuracy and stability
properties. Figure 1 indicates an overall unimpressive algebraic convergence
rate for both methods. It is well known that RBF methods converge at
spectral rates [8], but this requires that the shape parameter c be held
fixed while N increases. However, for this example this proves impossible if
eigenvalue stability is to be maintained.

To examine the methods without the need to impose boundary condi-
tions, consider the variable coefficient equation

∂u

∂t
+ x

∂u

∂x
= 0 (18)

on the interval [−1, 1]. The initial condition is taken from the exact solution
u(x, t) = e−400(xe−t)2 . The differentiation matrix for this example is D =
diag(−x)Dm.

With NB = 0, it is not difficult to find a set of centers for which Bs

is singular. For example, N = 99 equidistant centers on [−1, 1] produce a
singular Bs. A condition number bound of κ(Ba) ≤ 5e15 produces D on
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Figure 3: Stability region of LDDRK46 and spectra of the MQ Ds for equa-
tion 18 scaled by ∆t = 0.005. Left: c = 11 and κ(Bs) = 3.7e13 (.), c = 13
and κ(Bs) = 2.3e12 (x). Right: c = 100 and κ(Bs) = 2.7e6 (+).

centers t = 1 t = 10
equidistant 1.4e-7 2.3e-7

mapped CPS 2.3e-5 1.7e-3
RBF 1.1e-6 4.9e-4

random 6.4e-3 2.8e-1

Table 3: Max norm errors of the asymmetric MQ method for the 1d variable
coefficient advection example with N = 100 equidistant, mapped CPS, RBF,
and random centers. Time integration with LDDRK46 and ∆t = 0.01.

N = 100 equidistant, mapped pseudospectral (17) and RBF center distri-
butions using 86 equidistant interior centers and 7 mildly clustered centers,
as specified by (17) near each boundary. As a severe test we form D on
100 random sets of centers using the same condition number range and 31
unstable spectra result. The accuracy results on the different center loca-
tions are in table 3. The most accurate results were obtained on equidistant
centers.

3.2 Two Dimensions

As a 2d dimensional example consider the advection equation

∂u

∂t
− µx

∂u

∂x
− µy

∂u

∂y
= 0 (19)

10



symmetric asymmetric
centers κ(Bs) bound ert=.4 κ(Ba) bound ert=.4

uniform 1e14 2.4e-4 1e14 3.7e-5
optimal 1e14 8.6e-5 1e12 4.2e-5
random 1e14 7.4e-4 − 4.7e-2

Table 4: Stable condition number bounds and accuracy results for example
for the 2d advection equation.

on the unit square [0, 1] × [0, 1] with µx = µy = 1. Dirichlet boundary
conditions u(1, y, t) = 0 and u(x, 1, t) = 0 are applied and an initial condition
u(x, y, 0) = e−100[(x−0.7)2+(y−0.7)2] is used. For this example, L = µx

∂
∂x +

µy
∂
∂y , L∗ = −µx

∂
∂x − µy

∂
∂y , and LL∗ = −µ2

x
∂
∂x − 2µxµy

∂2

∂x∂y − µ2
y

∂
∂y .
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Figure 4: Left: N = 1600 center locations for the 2d advection example.
Right: Stability region of LDDRK46 and eigenvalues of the MQ Ds scaled
by ∆t = 0.005.

Using the MQ RBF, the example is solved on three sets of N = 1600
centers: equidistant tensor product, random, and near-optimal. The near-
optimal centers are located according to the geometric greedy algorithm of
[12] which produces well-distributed near-optimal center sets in the sense
that the center sets have small fill distances (3) and large separation dis-
tances (2). The center sets are produced by adding a new center to fill the
currently largest hole in the existing center set by placing the new center
in the center of the hole. The N = 1600 near-optimal centers are pictured
in the left image of figure 4. For the random center locations we first ob-
tain a uniform coverage of the boundary since we are interested in applying
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Figure 5: 116 boundary centers and 1484 randomly located interior centers.

boundary conditions and then randomly distribute centers in the interior of
the domain. We have used 116 boundary centers and 1484 randomly located
interior centers. An example random center distribution is in figure 5.

Listed in table 4 are the condition number bounds of the methods on the
three center distributions that produce differentiation matrices with stable
spectra. Additionally, the max norm errors of the methods are recorded at
t = 0.4 before the hump has left the computational domain. Time inte-
gration was with LDDRK46 with ∆t = 0.005. For the symmetric method,
all center locations were stable for κ(Bs) ≤ 1e14. As was the case in the
1d examples, the asymmetric method with random center locations did not
have a stable spectrum.

A 2d example that does not require that boundary conditions be imposed
is the variable coefficient advection equation

∂u

∂t
− 2y

∂u

∂x
+ 2x

∂u

∂y
= 0 (20)

on the unit circle centered at the origin with initial condition

u(x, y) = e−200((x−0.3)2+(y−0.3)2).

The initial condition is in the right image of figure 6. The solution at time
t = Nπ agrees with the initial data for any integer N since the flow has then
made N complete rotations.

Three sets of N = 1600 center locations were used. The centers are
shown in figure 7. The first set is uniformly distributed, the second set
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Figure 6: Left: Initial condition for the 2d variable advection example.
Right: Error after 10 rotations on the uniformly distributed centers of the
left image of figure 7.

center distribution ert=π ert=5π ert=10π

uniform 3.1e-6 1.6e-5 3.1e-5
near-optimal (n-o) 2.3e-5 1.3e-4 2.4e-4

n-o w/uniform boundary 8.9e-6 4.6e-5 8.8e-5

Table 5: Accuracy results for the 2d variable coefficient advection example.

is near-optimal, and the third set uniformly distributes 160 centers on the
boundary and then distributes the interior centers with the near-optimal al-
gorithm. A Matlab script to produce the near-optimal centers with uniform
boundary centers is in figure 11.

With the asymmetric method, the example is discretized as

Da = diag (−2y) DXa + diag (2x) DYa (21)

where DXa is the asymmetric differentiation matrix with respect to x and
DYa is the asymmetric differentiation matrix with respect to y. On all
three sets of centers a shape parameter of c = 4.5 is used which results
in κ(Ba) ≈ 3.0e12 and a stable spectrum. The example is advanced in
time with LDDRK46 and a time step of ∆t = π/400. The results are
summarized in table 5. Even though boundary conditions are not enforced,
uniformly distributing centers on the boundary results in smaller boundary
region errors. As was the case in the 1d example that did not require that
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boundary conditions be enforced, it is easy to find center distributions for
which Bs is numerically singular.
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Figure 7: Center locations for the 2d variable coefficient advection example.
Left: uniformly distributed. Middle: near-optimal. Right: near-optimal
with uniform boundary.
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Figure 8: Left: Domain and N = 1000 near optimal centers for equation
(23). Right: Randomly located centers.

Our final example is Maxwell’s equations in two space dimensions [13]
for the transverse-magnetic mode (TM) field,

∂E

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(22)

∂Hx

∂t
= −∂E

∂y

∂Hx

∂t
=

∂E

∂x

where Hx and Hy are the x and y components of the magnetic vector H and
E is the electric field in the z direction. The domain consists of the space
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between two concentric circles 1
6 < r =

√
x2 + y2 < 1

2 . The case of perfectly
conducting boundaries is considered, thus a zero Dirichlet boundary condi-
tion E = 0 is used. From the system (22) a wave equation can be extracted
for the electric field E,

∂2E

∂t2
=

∂2E

∂x2
+

∂2E

∂y2
. (23)

The initial conditions are taken from the exact solution

E(r, θ, t) = cos (ωt + θ) [J1(ωr) + αY1(ωr)]

where θ = arctan(y/x), J and Y are respectively first-order Bessel functions
of the first and second kind, α = 1.76368380110927 and ω = 9.813695999428405.
For equation (23) we have L = L∗ = ∂2

∂x2 + ∂2

∂y2 and LL∗ = ∂4

∂x4 +2 ∂4

∂x2∂y2 + ∂4

∂y4 .
After discretizing equation (23) in space with the RBF differentiation matrix
D we have the semi-discrete equation

Ett = DE. (24)

A typical approach to advance equation (24) in time is to rewrite it as a first
order system. Introducing new variables u = E and v = Et, or U = [u v]T ,
equation (24) can be written as the equivalent first order system

[
u
v

]

t

=
[

0 I
D 0

] [
u
v

]
= D U. (25)

On 100 sets of random center locations, such as shown in the right image
of figure 8, both Ds and Da have eigenvalues with negative real parts for
κ(B) as large as 1e18. However, the eigenvalues also have small imaginary
parts that grow with κ(B). A typical spectrum is shown in the left image
of figure 9. The eigenvalues of D with non-zero imaginary parts cause the
matrix D to have eigenvalues with positive real parts and prevent stable
time integration of the first order system by LDDRK46.

Another approach is to work directly with the second order in time PDE
(23). Störmer’s method for utt = F (u) is

un+1 = 2un − un−1 + h2F (un) (26)

where h is the size of the time step. Methods for second order equations
typically require the discretized operator to have a purely real spectrum for
stability. In the h2λ plane, the stability interval of Störmer’s method is
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the interval [−4, 0]. The method has second order accuracy. The stability
interval of the method can be increased to the region shown in the center
image of figure 9 by applying a symmetric filter [14] to time level un−1 of
method (26). The filtered method remains second order accurate and can
be written as the novel linear multistep method

un+1 =
1
16

[
30un − 11un−1 − 4un−2 + un−3 + 17h2F (un)

]
. (27)
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Figure 9: Left: Spectra of Ds on near-optimal centers shown in the left image
of figure 8 for equation (23) with the MQ RBF and c = 2, κ(Bs) = 6e12.
Middle: spectra scaled by h2 and stability region of method (27). Right:
middle image zoomed in near origin.

As an example we discretize equation (23) in space with the symmetric
MQ method with c = 2 on N = 1000 near optimal centers. The problem
is advanced in time with method (27) with h = 0.012. The spectrum of Ds

is in the left image of figure 9 and the scaled spectrum within the stability
region of method (27) is shown in the center image of figure 9. The right
image of figure 9 zooms in on the region around the origin in the center
image. The numerical solution at times t = 10 and t = 50 is shown in figure
(10).

4 Summary

The only previous study of eigenvalue stability of RBF collocation methods
for time dependent PDEs concentrated on identifying stable center locations.
Only the asymmetric collocation method was considered in the specialized
case of simple domains and tensor product grids. In this work, we have
considered both the asymmetric and symmetric methods in the more general
setting of complexly shaped domains and scattered centers for some model
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Figure 10: Numerical solution of equation (23). Left: t = 10. Right: t=50.

hyperbolic problems. The results of the numerical study give insight into the
applicability and the stability properties of the asymmetric and symmetric
methods for various types of hyperbolic problems.

The numerical results for the model problems show that eigenvalue sta-
bility with the symmetric method can be achieved for first order initial
boundary values problems in the very general setting of complexly shaped
domains and scattered centers by bounding the condition number of the
evaluation matrix Bs. However, in the same setting, eigenvalue stability for
the asymmetric method was only possible for structured center locations.
In examples that did not require that boundary conditions be enforced, i.e.,
NB = 0, the symmetric method was not applicable as center locations were
easily found so that Bs was singular. In these examples, enforcing condition
number bounds on Ba resulted in eigenvalue stability on center locations
with structure, but not with randomly located centers.

For an initial boundary value problem with only second-order deriva-
tives, the derivative matrices for both methods have eigenvalues with small
imaginary parts which make impossible stable time stepping by standard ex-
plicit methods. However, we have presented a new method with a stability
region suitable for the example problem.

For first-order problems, the spectral radius of Da grew with κ(Ba) while
the spectral radius of Ds declined for increasing κ(Bs). However, for second-
order problems the spectral radius of D for both methods declined with
increasing κ(B), but the size of the imaginary part of the eigenvalues in-
creased.
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Neither method provided a clear advantage in accuracy, although the
symmetric method did demonstrate superior accuracy on one of the model
problems. It was found that good center locations for applications in com-
plexly shaped domains are equidistant boundary centers and near-optimal
interior centers.

The asymmetric differentiation matrix Da can always be formed while it
is known that certain sets of center locations exist for which the symmetric
differentiation matrix Ds can not be formed. However, as in the case of the
asymmetric method for steady problems, extensive computational evidence
indicates that this is rarely the case in practice. Due to favorable stabil-
ity properties for time dependent problems, the symmetric method should
be the method of choice for first order hyperbolic initial boundary value
problems.
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function Xn = unitCircleNearOptimalCenters(nbPts,N,M,niPts)

% INPUTS:

% nbPts the number of equidistant boundary points on the circle

% N, M number of points in the x (y) direction of the overlying mesh

% niPts number of points added in the interior of the domain

% OUTPUTS:

% Xn near-optimal center locations, Xn(:,1) x coordinate, Xn(:,2) y

% EXAMPLE USAGE: Xn = unitCircleNearOptimalCenters(160,200,200,1440,true);

% would end up with 160 + 1440 = 1600 points

% -- add all boundary points to Xn --------------------

Xn = zeros(nbPts + niPts,2); dt = (2*pi)/nbPts;

theta = (0:dt:2*pi - dt)’; rho = abs(cos(theta)+i*sin(theta));

[xc,yc] = pol2cart(theta,rho); Xn(1:nbPts,1) = xc; Xn(1:nbPts,2) = yc;

%--- identify possible interior center -----------------

[X,Y] = meshgrid(linspace(-1,1,N),linspace(-1,1,M)); omegaNt = zeros(N*M,2);

xL = reshape(X,N*M,1); yL = reshape(Y,N*M,1); [th,p] = cart2pol(xL,yL); I = 1;

for k=1:length(th)

t = th(k); r = p(k); ro = abs(cos(t)+i*sin(t));

if (r<ro & r>0) % if pt is in region add to omegaN

if (xL(k)~=0 & yL(k)~=0)

omegaNt(I,:) = [xL(k) yL(k)]; I = I + 1;

end

end

end

omegaN = omegaNt(1:I,:); clear omegaNt

%---- select near-optimal centers ----------------------------

N = length(omegaN(:,1)); % number of candidates to be added to Xn

bpi = 1:nbPts; % index of boundary points in the Xn(i,:)

n = nbPts; % the number of points currently in Xn

minDstToXn = zeros(N,1); % for x in omegaN \ Xn compute the distance

for k=1:N % to the nearest point in Xn

minDst = 100;

for j=1:n

dst = norm(omegaN(k,:)-Xn(j,:),2);

if dst<eps, minDst = 0; % => omegaN(k,:) already is in Xn

elseif dst<minDst, minDst = dst; end

end

minDstToXn(k) = minDst; % smallest distance of omegaN(k,:) to any Xn

end

for j = 1:niPts % find the omegaN(k) in the laregest hole in Xn

n = n + 1;

[notUsed,indexAddToXn] = max(minDstToXn);

Xn(n,:) = omegaN(indexAddToXn,:); minDstToXn(indexAddToXn) = 0;

for k=1:N % update distances for added point

if minDstToXn(k) >= eps

dst = norm(omegaN(k,:)-Xn(n,:),2);

if dst<minDstToXn(k), minDstToXn(k) = dst; end

end

end

end

Figure 11: Matlab function for finding near-optimal center locations on the
unit circle with uniform boundary spacing.
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function dm = adv1d_dms_mq(dmCh,shape,x)

% produces differentiation matrix for

% Ut - Ux = 0 on [-1,1] with U(1,t) = 0

% INPUTS:

% dmCh = 0 symmetric, 1 asymmetric

% x centers, for example x = linspace(-1,1,100);

% shape shape parameter

N = length(x); NB = 1; % boundary points

NI = N - NB; % interior points

H = zeros(N,N); Hx = zeros(N,N); rx = zeros(N,N); r = zeros(N,N);

for i=1:N, for j=1:N

rx(i,j) = x(i) - x(j); r(i,j) = abs( rx(i,j) );

end, end

if dmCh==0 % symmetric

L = dPhi( r(1:NI,NI+1:N),rx(1:NI,NI+1:N),shape); % block 2 of H

LS = L’; % block 3 of H

Hx( 1:NI,1:NI ) = -dPhi2( r(1:NI,1:NI),rx(1:NI,1:NI),shape); % block 1 of H

Hx( 1:NI,NI+1:N) = L; % block 2

Hx(NI+1:N,1:NI ) = LS; % block 3

Hx(NI+1:N,NI+1:N ) = phi(r(NI+1:N,NI+1:N),shape); % block 4 of H

H( 1:N,1:NI ) = -dPhi(r(1:N,1:NI),rx(1:N,1:NI),shape); % block 1 of B

H(1:N,NI+1:N ) = phi(r(1:N,NI+1:N),shape);

elseif dmCh==1 % asymmetric

Hx(1:N-1,:) = dPhi(r(1:N-1,:),rx(1:N-1,:),shape); % interior points

Hx(N,:) = phi(r(N,:),shape); % Dirichlet BC at x=1

H = phi(r,shape);

end

cond(H)

dm = Hx/H; dm(end,:)=0; dm(:,end)=0; % zero Dirichlet BCs at x=1

function mq = phi(r,c), mq = sqrt(1 + (r.*c).^2); end

function mqD = dPhi(r,rx,c), mqD = (rx.*c.^2)./sqrt(1 + (r.*c).^2); end

function mqD2 = dPhi2(r,rx,c), mqD2 = (c.^2)./sqrt(1 + (r.*c).^2).^3; end

end

Figure 12: Matlab function for calculating the MQ symmetric and asym-
metric differentiation matrices for the 1d advection example.
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