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Abstract

Several variable shape parameter methods have been successfully used in Radial

Basis Function approximation methods. In many cases variable shape parame-

ter strategies produced more accurate results than if a constant shape parameter

had been used. We introduce a new random variable shape parameter strat-

egy and give numerical results showing that the new random strategy often

outperforms both existing variable shape and constant shape strategies.
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1. Introduction

Mathematicians have typically shied away from using a variable shape pa-

rameter strategy due to it adding an additional layer of complexity to the analy-

sis of Radial Basis Function (RBF) methods. However Scientists and Engineers

have shown in numerous works, including [2, 3, 8, 9, 5, 6, 7], that in terms of the

accuracy of RBF methods that variable shape parameter strategies may have an

advantage over a constant shape parameter strategy. In this work we introduce

a new random variable shape parameter strategy.

First we briefly review RBF approximation methods for interpolation and

steady PDEs. Then we describe some existing variable shape strategies as well
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as a new random variable shape strategy. Subsequently, the variable shape

strategies are applied to a battery of test problems and then improvements to

the random shape strategy are suggested for the case of widely scattered centers.

2. RBF Approximation

Given a set of centers xc
1, . . . ,x

c
N in R

d, the RBF interpolant takes the form

s(x) =

N
∑

j=1

αjφ(
∥

∥x − xc
j

∥

∥

2
, ε) (1)

where

r = ‖x‖2 =
√

x2
1 + · · · + x2

d.

We focus on RBFs φ(r) that are infinitely differentiable and that contain a free

parameter ε called the shape parameter. Some examples from this class of RBF

are listed in table 1. In all the numerical examples, we have used the MQ which

is representative of this class and is popular in applications. The coefficients α

are chosen by enforcing the interpolation condition

s(xi) = f(xi) (2)

at a set of nodes that typically coincide with the centers. Enforcing the inter-

polation conditions at N centers results in a N × N linear system

Bα = f (3)

to be solved for MQ expansion coefficients α. The matrix B with entries

bij = φ(
∥

∥xc
i − xc

j

∥

∥

2
), i, j = 1, . . . , N (4)

is called the interpolation matrix or the system matrix and consists of the

functions serving as the basis of the approximation space. For distinct center

locations, the system matrix for the RBFs in table 1 is known to be nonsingular

[10] if a constant shape parameter is used. To evaluate the interpolant at M

points xi using (1), the M × N evaluation matrix H is formed with entries

hij = φ(
∥

∥xi − xc
j

∥

∥

2
), i = 1, . . . , M and j = 1, . . . , N. (5)
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Then the interpolant is evaluated at the M points by the matrix multiplication

fapprox = Hα. (6)

Steady PDE problems are discretized by the RBF method in the following

manner. If L is a linear differential operator, we have the linear boundary value

problem

Lu = f in Ω (7)

where boundary conditions are imposed on all or parts of the boundary ∂Ω by a

boundary operator B so that the PDE is well-posed. Let Ξ be a set of N distinct

centers that are divided into two subsets. One subset contains NI centers, xc
I ,

where the PDE is enforced and the other subset contains NB centers, xc
B
, where

boundary conditions are enforced. For simplicity, it is assumed that the centers

are in an array that is ordered as Ξ = [xc
I ; xc

B
].

The RBF collocation method applies the operator L to the RBF interpolant

(1) as

Lu(xc
i ) =

N
∑

j=1

αjLφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = 1, . . . , NI (8)

at the NI interior centers and applies the operator B which enforces boundary

conditions as

Bu(xc
i) =

N
∑

j=1

αjBφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = NI + 1, . . . , N (9)

at the NB boundary centers. In matrix notation, the right side of equations (8)

and (9) can be written as Hα where the evaluation matrix H that discretizes

the PDE consists of the two blocks

H =





Lφ

Bφ



 (10)

with the two blocks of H having elements

(Lφ)ij = Lφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = 1, . . . , NI , j = 1, . . . , N

(Bφ)ij = Bφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = NI + 1, . . . , N, j = 1, . . . , N.
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From the interpolation problem, we have that α = B−1u where B is the system

matrix with elements given by equation (4). The matrix that discretizes the

PDE in space is the differentiation matrix

D = HB−1. (11)

The differentiation matrix may discretize a single space derivative or an entire

differential operator.

The steady problem (7) is discretized as

Du = f (12)

and has solution

u = D−1f = BH−1f. (13)

Even when employing a constant shape parameter, the evaluation matrix H can

not be shown to always be invertible. In fact, examples have been constructed

in which the evaluation matrix is singular [4]. Depending on the differential

operator L, the functions used to form the matrix H may not even be radial.

Despite the lack of a firm theoretical underpinning, extensive computational

evidence indicates that the matrix H is very rarely singular and the asymmetric

method has become well-established for steady problems. If the boundary value

problem is instead nonlinear, some type of iterative method will have to be used

to evaluate the RBF approximation.

3. Variable Shape Strategies

Heuristically, it has been argued that using a variable shape parameter is a

good idea. A variable shape parameter strategy refers to uses a possibly different

value of the shape parameter at each center. This results in shape parameters

that are the same in each column of the interpolation matrix or the evaluation

matrix. One argument for using a variable shape parameter is that it leads to

more distinct entries in the RBF matrices which in turn leads to lower condition

numbers. A negative consequences of using a variable shape is that the system
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matrix is no longer symmetric. The standard results of the invertibility of the

system [10] for a constant shape parameter no longer apply. However, some

progress has been made to establish the invertibility of the system matrix when

the shape is non-constant [1].

In [5], the formula

εj =

[

ε2
min

(

ε2
max

ε2
min

)

j−1

N−1

]

1

2

j = 1, . . . , N, (14)

which gives a exponentially varying shape parameter, was suggested in order to

have a different value shape parameter with each basis function in the expansion

(1). Variable shape parameter strategy (14) was introduced for use as a formula

for the shape parameter c in the original definition of the MQ, φ(r) =
√

c2 + r2.

The strategy works equally as well as formula for ε in the modern definition

of the MQ in table 1. This is due to the reciprocal relationship between the

shape definitions and the fact that it does not matter wether the shape pa-

rameter increases or decreases with the center number [5]. Further numerical

experiments with the variable shape parameter strategy (14) can be found in

reference [8]. In [8] it was shown that very accurate approximation results could

be obtained if ε2
min and ε2

max varied by several order of magnitude. The strategy

was successful even when the underlying function varied rapidly or had steep

gradients. However, also in reference [8], it was shown that this recipe did not

always work. One such example is on the surface of a sphere where a constant

shape parameter worked the best.

Other possible variable shape parameter strategies include a linearly varying

parameter

εj = εmin +

(

εmax − εmin

N − 1

)

j j = 0, 1, . . . , N − 1 (15)

and the random shape strategy

εj = εmin + (εmax − εmin) × rand(1,N) (16)

that we are proposing in this work. The function rand is the Matlab function

that returns N uniformly distributed pseudo-random numbers on the unit inter-
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val. Equation (16) returns N random shape parameters between εmin and εmax,

and unlike the strategies (14) and (15), the shape parameters are not monotone

increasing or decreasing. From our experience, the exponential (14) and linearly

(15) varying shape parameters have a tendency to result in approximations that

have larger errors in regions where the shape parameter, ε, is largest. Due to its

non-monotone nature, the proposed random variable shape parameter strategy

(16) seems to alleviate this problem while at the same time providing a variable

shape that improves the conditioning of the resulting matrices.

In figure 1, the shape parameter values from the various selection strategies

are illustrated with N = 40 centers and εmax = 10 and εmin = 1.

4. Numerical Examples

In all plots, the random variable shaped parameter results are marked with

a solid line, exponential with a dotted line, constant with a dashed line, and

linear with a dashed dotted line. All error plots display the maximum error.

4.1. 1d interpolation

Our first numerical experiment involves interpolating four 1d functions with

different properties. The functions are an exponential and trigonometric com-

bination

f1(x) = exp(x3) + cos(2x),

a second degree polynomial

f2(x) = x2 + 2x + 1,

a function with a steep front in the center of the domain

f3(x) = arctan 5x,

and a constant function

f4(x) = 1.
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The results are compared over a range of the average shape parameter

εavg =
1

2
(εmax + εmin).

The distance K = εmax − εmin has been specified as K = 1 in all reported

results. The numerical experiments were run over a wide range of K values and

taking K ≈ 1 typically resulted in the best accuracy. Taking K ≫ 1 severely

degraded the accuracy when compared to using small K.

In figure 2 the accuracy results are shown from the four shape parameter

strategies being applied to the four functions above. In the left column of the

figure N = 60 equally spaced centers have been used and the interpolant was

evaluated at M = 200 equally spaced evaluation points. In the right column

N = 180 equally spaced centers have been used and the interpolant was eval-

uated at M = 300 equally spaced evaluation points. The condition numbers

of the system matrix versus the average shape parameter is shown in figure

3. The condition numbers of the system matrices are very similar for all four

shape strategies with both N = 60 and N = 180. With N = 60, the variable

random shape strategy produces the best accuracy by several decimal places for

functions f1, f2, and f4 and accuracy comparable to the other three strategies

for function f3. Function f3 is revisited in section 5 where the variable random

shape strategy is modified to effectively handle widely scattered center loca-

tions. With N = 180 the variable random shape strategy again results in the

best accuracy. This results are very accurate even though the condition number

of the system matrices (right image of figure 3) are extremely large.

4.2. 2d interpolation

As a two dimensional example, the function

f(x, y) = exy (17)

is interpolated on a domain that is the portion of the circle centered at the

origin with radius
√

2 that is in the first quadrant with x ≥ 0 and y ≥ 0.
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In a large number of numerical experiments, the variable random shape

strategy consistently produced more accurate results using equally spaced cen-

ters than the three other strategies that have been considered. When the centers

become scattered, the variable random shape strategy seems to loose its advan-

tage over the other two variable shape strategies. With scattered centers, all

three variable shape strategies produce approximately the same accuracy which

is considerably better than if a constant shape had been used. In section 5, the

variable random shape strategy will be modified to perform better on scattered

centers.

Using the N = 1297 uniformly spaced centers in the top left image of figure

4 to interpolate function (17) results in the accuracy versus the average shape

parameter shown in the left image of figure 5. The variable random shape

strategy is about two decimal places more accurate over a large range of average

shape parameters than are the other three strategies. If instead the N = 1297

scattered centers in the bottom left image of figure 4 are used, then the three

variable shape strategies produce about the same accuracy which is in some cases

about four decimal places more accurate than when using a constant shape.

4.3. 2d linear BVP

We use the two dimensional linear Elliptic boundary problem

uxx + uyy = f(x, y), (x, y) ∈ Ω (18)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω

as a steady PDE test problem for the shape parameter strategies. The domain Ω

is taken to be a circle of radius 1/2 that is centered at the origin. The N = 250

centers that are used in the example are shown in figure 6.

First we specify f and g in (18) so that the exact solution is the exponential

function

u(x, y) = e(x+2y). (19)

Next f and g are specified in (18) so that the exact solution is the relatively flat
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function

u(x, y) =
65

65 + (x − 0.2)2 + (y + 0.1)2
. (20)

The accuracy versus a range of average shape parameters is shown in figure 7.

In both problems the constant shape parameter is the least accurate. Of the

three variable shape strategies, the random strategy is slightly more accurate

on both problems.

5. Improved Random Variable Shape for Scattered Data

Function f3(x) is flat near the boundaries but has a steep gradient near x = 0

as shown in left image of figure 8. Thus the uniform placement of center used

for this function in section 4.1 is not the best choice. A better choice would be

a distribution of centers that clusters more densely around x = 0 as is specified

by equation

xj =
2

π
arcsin

(−1 + 2j

N − 1

)

, j = 0, . . . , N − 1 (21)

and is illustrated in the right image of figure 8. On such nonuniform grids, the

random variable shape parameter was the least accurate of the four methods

tested. To improve the performance of the random variable shape parameter

with scattered centers, information about the minimum distance of a center to

its nearest neighbor hn can be incorporated into the algorithm as

εj =
µ

hn

[εmin + (εmax − εmin) × rand(1,N) ] (22)

where µ > 0 is a user specified parameter.

Using the N = 60 centers in the right image of figure 8 and setting µ = 1/20

we get the shape parameters shown in figure 10. The accuracy of the modified

random variable shape strategy is compared to the accuracy of the other three

strategies in the left image of figure 9. The modified random variable shape

strategy is considerably more accurate over the entire range of average shape

parameters. Additionally, the condition number of the system matrix of the

modified random method is considerably smaller over most of the average shape

range in comparison to the other three methods.
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Note that while the information about the minimum distance of a center to

its nearest neighbor could be incorporated into the variable linear and exponen-

tial shape strategies as well, but then they would produce shapes that would

not be linear or exponentially varying.

6. Conclusions

We have compared four shape parameter strategies and applied them to a

battery of test problems. One strategy uses a constant shape while the other

three use a different value of the shape parameter at each center. The use

of a constant shape produced the least accurate result on the test problems.

In interpolation problems, a new random variable shape parameter strategy

produced the most accurate results if the centers were uniformly spaced. If the

random variable shape parameter is modified to incorporate information about

the minimum distance of a center to its nearest neighbor the random shape

strategy again produced the most accurate results, even with very irregularly

spaced centers. On two Poisson problems, the constant shape was again the least

accurate. The random variable strategy resulted in slightly better accuracy on

the steady PDE problems than when using the variable linear and exponential

shapes. A small distance between εmin and εmax, such as K = 1, led to the

most accurate results in all three variable shape strategies.
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Name of RBF Definition

Multiquadric (MQ) φ(r, ǫ) =
√

1 + ǫ2r2

Inverse Multiquadric (IMQ) φ(r, ǫ) = 1/
√

1 + ǫ2r2

Inverse Quadratic (IQ) φ(r, ǫ) = 1/(1 + ǫ2r2)

Gaussian (GA) φ(r, ǫ) = e−ǫ2r2

Table 1: Global, infinitely smooth RBFs containing a shape parameter.
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Figure 1: Left: constant, linearly varying, and exponentially varying, shape parameters.

Right: random shape parameters.
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Figure 2: Accuracy over a range of average shape parameters. Row 1 function f1, row 2

function f2, row 3 function f3, and row 4 function f4. Left: N = 60. Right: N = 180.
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Figure 3: Condition number of the system matrix versus the average shape parameter. Left:

N = 60. Right: N = 180.
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Figure 4: Centers and evaluation points for interpolating function (17). Top left: N = 1297

uniformly spaced centers. Top right: M = 1917 scattered evaluation points. Bottom left:

N = 1297 scattered centers. Bottom right: M = 1917 uniformly spaced evaluation points.
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Figure 5: Accuracy in interpolation function (17) over a range of average shape parameters.

Left: Using N = 1297 uniformly spaced centers shown in the top left image of figure 4. Right:

Using N = 1297 scattered centers shown in the bottom left image of figure 4
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Figure 6: Centers for the Poisson problem (18).
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Figure 7: Accuracy versus average shape parameter. Left: Poisson problem with solution

(19). Right: Poisson problem with solution (20).
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Figure 8: Left: f3(x). Right: 60 centers located according to equation (21).
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Figure 9: Left: Accuracy versus average shape parameter. Right: System matrix condition

numbers versus average shape parameter.
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Figure 10: Variable random shape parameters with minimum separation distance incorpo-

rated.
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