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Abstract

Digital total variation (DTV) filtering techniques, that originated in
the field of image processing, are adapted to postprocess Radial Basis
Function approximations of piecewise continuous functions. Through
numerical examples, we show that DTV filtering is a fast, robust, post-
processing method that can be used to remove Gibbs oscillations while
sharply resolving discontinuities. The method is applicable for arbi-
trarily located data points. A postprocessing method for scattered
data had not been given previously.

keywords: Gibbs phenomena, Radial Basis Functions, meshfree, Digital
Total Variation filtering, postprocessing.

1 Introduction

Over the last several decades radial basis functions (RBFs) have been found
to be successful for the interpolation of smooth functions on scattered data
sets. More recently, the RBF methods have emerged as an important type
of method for the numerical solution of partial differential equations (PDEs)
[1, 2]. Most PDE results have concerned steady state problems with smooth
solutions. Recently there has been a growing interest in applying RBF meth-
ods to time-dependent PDE problems, again to problems with sufficiently
smooth solutions.

Like most approximation methods and particularly global methods, the
accuracy of the RBF methods is severely degraded by Gibbs oscillations
when the underlying function is only piecewise continuous. Many physical
phenomenon are represented by piecewise smooth functions. However, this
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does not rule out the accurate modelling of these phenomenon by methods
which are plagued by the Gibbs phenomenon. Often a very accurate ap-
proximation can be recovered from the initial oscillatory approximation via
a postprocessing technique.

For the more developed pseudospectral method [3], there are several
postprocessing methods [4], the most powerful of which require the knowl-
edge of the exact location of the discontinuities. The process of pinpointing
the exact location of the discontinuities is in itself a challenging problem.
The difficulty of edge detection is increased when discontinuities are not
aligned with a cartesian grid and/or when the data is scattered in irregularly
shaped domains. Typically, postprocessing methods that do not incorporate
edge detection are easier to apply but inferior in accuracy to methods that
do.

Recently Digital Total Variation (DTV) filtering, which is based on im-
age processing ideas, has been presented as a postprocessing method for
Chebyshev pseudospectral approximations to conservation laws [5]. The
DTV filter was shown to be a fast, robust, postprocessing method for ac-
celerating the convergence of pseudospectral approximations that have been
contaminated by Gibbs oscillations. The DTV filter sharply resolves discon-
tinuities without prior knowledge of edge locations as it has built-in edge
detection. Unlike other pseudospectral postprocessing methods, the DTV
filter does not require that the data be located on a structured pseudospec-
tral grid. Thus, it is a more general method.

To date, there have been few applications of RBF methods to problems
with discontinuities or even very steep gradients. In one dimension, adaptive
methods for problems with step gradients have been proposed [6, 7], but
problems with shocks or other discontinuities have not been effectively dealt
with. The stability of RBF methods for conservation laws has yet to be
addressed. Postprocessing methods for scattered RBF approximations of
piecewise continuous functions have not been described.

In this work we discuss the application, with some modifications, of the
DTV filter to scattered approximations by radial basis functions.

2 RBF interpolation

A radial basis function φ(r) is a continuous univariate function that has
been radialized by composition with the Euclidean norm on Rd. Globally
supported RBFs may or may not have a free parameter called the shape
parameter which we denote by c. Well known RBFs without a shape pa-
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Name of RBF Definition
Multiquadric (MQ) φ(r, c) =

√
1 + c2r2

Inverse Quadratic (IQ) φ(r, c) = 1/(1 + c2r2)
Gaussian (GA) φ(r, c) = e−c2r2

Matern (MT) φν(r, c) = 21−ν

Γ(ν) (cr)νKν(cr)

Table 1: Global, infinitely smooth RBFs

rameter are the polyharmonic splines

φ(r) =
{

r2k−d if 2k − d > 0 is an odd integer
r2k−d log r if 2k − d > 0 is an even integer.

(1)

This class of RBF typically approximates smooth functions with algebraic
convergence rates. Some commonly used RBFs which are infinitely differen-
tiable and have a shape parameter are listed in table 1. In the definition of
the Matern RBF, Kv is a modified Bessel function and ν > 0 is a smoothness
parameter. This class can exhibit spectral rates of convergence in approx-
imating smooth functions. The interested reader is referred to the recent
book by Buhmann [8] for more basic details about RBFs.

Let Ξ be a finite distinct set of points in Rd, which are traditionally
called centers in the language of RBFs. The RBF interpolant consists of a
RBF expansion and augmented polynomials

s(x) =
N∑

i=0

γiφ(‖x− ξi‖2) +
m−1∑

j=0

τjpj(x), x ∈ Rd (2)

where {pj(x)}m−1
j=0 is a basis for space, Πd

m−1, of algebraic d−variate polyno-
mials that are of degree less than or equal to m− 1. The additional degrees
of freedom are taken up by requiring that

N∑

i=0

γipj(xi) = 0, j = 0, . . . , m− 1. (3)

If φ is positive definite (m = 0), as in the case of the IQ and GA, the
the un-augmented RBF interpolation problem is uniquely solvable. If φ
is only conditionally positive definite (CPD) of order m > 0, polynomial
terms must be added to the RBF expansion [9]. The polyharmonic splines
are conditionally positive definite of order m = k − bd/2c + 1. For more

3



information on CPD functions see [8]. The MQ is CPD of order m = 1 but
the un-augmented interpolation problem is nonsingular because of special
properties of the MQ [9].

The expansion coefficients, γi and τj , are found by requiring that

s|Ξ = f |Ξ (4)

for given data f |Ξ. That is, they are obtained by solving the linear system

H

[
γ
τ

]
=

[
A P
P T 0

] [
γ
τ

]
=

[
f |Ξ
0

]
(5)

where the elements of the matrix A are Ai,j = φ(‖ξi − ξj‖2) for i, j =
0, 1, . . . , N and the elements of P are Pi,j = pj(xi) for i = 0, 1, . . . , N and
j = 0, . . . , m− 1.

The conditioning of H is a practical concern. The interpolation ma-
trix may be very ill-conditioned as the separation distance between centers
decreases. For RBFs containing a shape parameter such as those in table
1, small shape parameters produce the most accurate results, but are also
associated with a poorly conditioned interpolation matrix.

3 Digital TV filtering

Variational based PDE restoration methods, such as total variation (TV)
filtering [10], have become one of the most important tools in image pro-
cessing. These methods assume that the images are defined on a continuous
domain and a continuous variational functional is constructed from which
an Euler-Lagrange equation is derived. The resulting differential equations
are then discretized by existing numerical PDE methods on a cartesian grid.
Another approach is to digitize the entire methodology. This approach starts
directly with a discrete variational problem and works with data on a gen-
eral discrete domain, a graph. The digitized approach is more flexible as
irregularly shaped domains and scattered data points can be handled with
ease. Digital total variation (DTV) filtering, developed in [11] and further
analyzed in [12], is one such digitized method. In the context of numerical
PDEs, it has previously been applied to steady solutions of conservation
laws computed by second-order Lax-Wendroff methods in [13] and [14] and
to the numerical solution of conservation laws by pseudospectral methods
in [5]. Next, the pertinent facts about the DTV filter from are summarized
and the reader is referred to [11, 12] for details.
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Let [Ω, G] be a finite set Ω of nodes and G a dictionary of edges. Vertices
are denoted by α, β, · · ·. The notation α ∼ β indicates that α and β are
linked by an edge. All the neighbors of α are denoted by

Nα = {β ∈ Ω |β ∼ α}. (6)

We start with a set of function values u0 on Ω that are contaminated by
Gibbs oscillations. The oscillations are removed by solving an unconstrained
minimization problem that minimizes a fitted TV energy. The solution of
the minimization problem is a system of nonlinear equations which can be
shown to have a unique solution that depends on a parameter λ and on u0.
The nonlinear system can be solved by a linearized Jacobi iteration as

u[n+1]
α =

∑

β∼α

hαβu
[n]
β + hααu0

α. (7)

The filter coefficients are defined by

hαβ(u) =
wαβ(u)

λ +
∑

γ∼α wαγ(u)
(8)

and
hαα(u) =

λ

λ +
∑

γ∼α wαγ(u)
(9)

where
wαβ(u) =

1
|∇αu|a

+
1

|∇βu|a
. (10)

The regularized location variation or strength at any node α is defined as

|∇αu|a =


 ∑

β∈Nα

(uβ − uα)2 + a2




1/2

. (11)

The parameter λ is a fitting parameter corresponding to a Lagrange multi-
plier in the variational problem that has been digitized. The regularization
parameter a is a small constant to avoid a zero local variation and to ensure
the stability of the algorithm. We have used a = 10−8 in our numerical ex-
amples. The iteration can be initialized by setting u[0] = u0. After the first
several iterations the corrections to the previous iteration are very small.
An effective stopping criteria is for the relative L1 residual between two
consecutive iterations to be less than some tolerance, i.e.,

∥∥u[k+1] − u[k]
∥∥

L1∥∥u[k]
∥∥

L1

≤ tol. (12)
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An estimation of the optimal fitting parameter for a current signal u[n]

is [11]

λ[n] ≈ 1
σ2

1
N + 1

∑

α∈Ω

∑

β∼α

wαβ(u[n]
β − u[n]

α )(u[n]
α − u0

α) (13)

where σ2 is the variance of the noise. The filtering process can be started
with

λ =
1
σ2

, (14)

and then updated every several steps with (13). However, if the initial λ is
used throughout the entire filtering process the results are typically just as
good as if λ had been updated every several steps. A wide range of λ results
in an accurate post-processing. Since the Gibbs oscillations are not random
noise, a more effective way to specify the fitting parameter λ is based on
the strength of the oscillations. More insight is provided in the numerical
examples.

The digital TV filter is a lowpass filter since

hαα +
∑

β∈Nα

hαβ = 1, α ∈ Ω. (15)

Because of the lowpass filter property the digital TV filter satisfies the max-
imum principle

min
β

u0
β ≤ u[n]

α ≤ max
β

u0
β (16)

at each node α. Unlike other post-processing algorithms, the DTV filter
has built-in edge detection. For a properly chosen regularization constant
λ, e.g. as specified by equation (14), a jump in the data will be indicated by
the weights wαβ being small compared to λ. This in turn causes hαα to be
near one which leads to a large portion of the original data being retained
as the filter is applied. On the other hand, in smooth regions, the weights
are large compared to λ, hαβ will be large and hαα ¿ 1 which leads to the
oscillations in the data being smoothed.

4 DTV filtering as RBF postprocessing

To illustrate the properties of the DTV filtering we interpolate the step
function

f(x) =
{

1 −1 ≤ x ≤ 0,
0 0 < x ≤ 1

(17)
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known at N scattered centers to M = 199 points that cluster around the
discontinuity at x = 0 and that are specified by xj = 2

π arcsin (−1+2j
M−1 ), j =

0, . . . ,M −1. The results are shown for N = 79 in the left image of figure 1.
For N = 39, 79, 159 the pointwise errors of the RBF approximation are in the
left image of figure 2 and the errors of the DTV postprocessed step function
approximations are shown in the right image of figure 1. The MQ RBF
was used and for N = 39, 79, 159 the shape parameter and fitting parameter
as ordered pairs (c, λ) were respectively (1.8, 1), (6, 1), and (16, 15). This
example provides some insight into the proper choice of the fitting parameter
λ. A wide range of λ results in an accurate post-processing. However, the
best results are attained with small λ for slowly oscillating functions, for
example when N = 39 and N = 79, and larger λ for more rapidly oscillating
functions, for example when N = 159. The acceleration of the convergence is
impressive and the jump is sharply resolved. For each N , the postprocessing
was completed in under one second. All numerical examples were executed
on a 3.00 GHz pentium 4 processor with Windows XP using Matlab 6.5.
Source code is available from the author by request. Additionally, the TV
filtering algorithm will be available in the forthcoming updated version of
[15] in the form of a Matlab toolbox.

There is a fundamental difference in the Gibbs oscillations in RBF ap-
proximations and in interpolating Chebyshev approximations to piecewise
continuous functions. For c > 0, the Gibbs oscillations in RBF approxi-
mants are more localized. For RBF approximants, the order of the max
norm errors are largely unaffected sufficiently away from a discontinuity,
while for Chebyshev approximants the orders of the max norm errors are re-
duce to 1/N . Near discontinuities, O(1) errors are present in both RBF and
Chebyshev approximants. A comparison of RBF and Chebyshev approxi-
mations of function (17) is given in figure 2. In the limit as c → 0, the RBF
and interpolating Chebyshev interpolant are known to be identical [16] and
intuitively we expect the the Gibbs oscillations in the two approximations
to behave more similarly for smaller c than for larger values of the shape
parameter.

In addition to postprocessing RBF interpolants, the DTV filter can be
used to postprocess numerical PDE solutions by RBF methods. PDE solu-
tions, particulary nonlinear hyperbolic conservation laws, have both sharp
fronts and finely detailed features. The following function is used as an
example:

f(x) =





1.0 + e20(x−0.32) 0 ≤ x < 0.32,
0.5 0.32 ≤ x ≤ 0.6,
1.5 0.6 < x ≤ 1.

(18)
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A desirable feature of a postprocessing method is that it removes oscillations
and at the same time it sharply resolves fronts and does not smear fine fea-
tures in the solution such as the spike near x = 0.32 in function (18). The
left image of figure 3 shows the function and its oscillatory RBF approxima-
tion on a nonuniform grid selected by an adaptive grid algorithm [7]. The
right image of figure 3 shows the DTV filter postprocessed approximation.
In the postprocessed solution, the discontinuities are sharply resolved and
the fine scale features are preserved.

5 Two-dimensional data

For two-dimensional scattered data, there are many ways to define Nα. One
is to consider a p point neighborhood of a node α consisting of the p points
that are closest to α. For arbitrary scattered data the flaw in this strategy
is quickly exposed as it is possible for the points in the neighborhood to be
configured as in the left image of figure 4 with all its members on one side
of α. A more effective strategy is to divide the region surrounding a point α
into p regions of equal angle and define Nα to consist of the points in each
region that are closest to α. This strategy does not usually result in the p
closest points to α but does ensure that Nα includes points in all directions
around α. We have used p = 8 in all examples. An example neighborhood
is shown in the right image of figure 4.

On the unit circle consider the function

f1(x, y) =
{

1 x < 0
0 x ≥ 0.

(19)

The RBF approximation on the set of scattered points shown in the left
image of figure 7 is displayed in the left image of figure 5 and the DTV
postprocessed approximation is in the right image. The pointwise errors are
shown in figure 6. The discontinuity is sharply resolved and the region of
significant errors is reduced to a small neighborhood of the discontinuity.

Consider a function with a more complicated discontinuity structure

f2(x, y) =





2 x, y < 0 and |x|+ |y| ≥ 1,
1 x ≥ 0 and y < 0 or,

x < 0 and y ≥ 0
0 x, y > 0 and x2 + y2 < 0.5,

(20)

on the domain outlined in the right image of figure 7. A contour plot of
function (20) is in figure 8. The MQ RBF approximation on the set of
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scattered points in the right image of figure 7 is shown in the left image of
figure 9. The DTV postprocessed approximation is in the right image of
figure 9. For piecewise constant functions in two dimensions, even on widely
scattered centers, the DTV filter is just as effective as it is for all functions
in one dimension.

For piecewise continuous, but not piecewise constant functions on widely
scattered centers the standard application of the DTV filter is not as success-
ful. For very smooth regions the underlying function can be represented by
a relatively sparse coverage of points. Between the sparsely located points
the change in function values may be large enough for the DTV algorithm to
mistake them as Gibbs oscillations unless the knowledge about the distance
between the centers is incorporated into the algorithm. Figure 11 shows
an idealized situation with two function values uα and vα and their respec-
tive closest neighboring function values uβ and vβ. Assuming a appropriate
distribution of centers, the large jump in the u data over a small distance
indicates a steep front near uα while the large jump in the v data over a
large distance should be recognized as a region of smoothness.

As an example consider the function

f3(x, y) =
{

e−x/8 x ≤ 0
0 x > 0

(21)

approximated (left image of figure 10) by the RBF φ(r) = r3 on the scattered
set of points on the unit circle shown in the left image of figure 7. In
the smooth but non-constant region of (x < 0, y) the points are sparsely
scattered and are clustered around the discontinuity at (x = 0, y). Applying
the standard DTV filter results in the postprocessed approximation in the
left image of figure 12. In the smooth region with sparely scattered centers
the large variation in function values between points is mistaken as noise
and the smooth region is distorted. Next we discuss two remedies.

5.1 Modifications

5.1.1 weighted graphs

If the centers are not too widely scattered using a weighted graph can im-
prove the postprocessing. This approach introduces a weight function W to
allow more influence in the filtering process from the points in Nα closest
to α and less influence from the more distant points in Nα. Equation (11)
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is modified to include the influence of the weight

‖∇guα‖a =


 ∑

β∈Nα

(uβ − uα)2Wα,β + a2




1/2

(22)

where W is a real positive weight function. A possible weight function is

Wα,β =
(

maxβ∈Nα dist(α, β)
dist(α, β)

)4

.

5.1.2 indicator functions

Another approach is to introduce an indicator function

η(α) = max
β∈Nα

|uα − uβ|
dist(α, β)

(23)

which measures the maximum ratio of jumps in function values to the dis-
tance between corresponding points over a neighborhood Nα. If η(α) is
greater than a prescribed tolerance the DTV filter is activated at α and oth-
erwise it is not. The indicator function for the cubic RBF approximation
of the function in equation (21) is displayed in the right image of figure 10.
The use of the indicator function results in the postprocessed approxima-
tion in the right image of figure 12. Applying the DTV filter only in select
regions results in a good postprocessed approximation. This is largely due
to the previous comments about the local nature of the Gibbs oscillations in
RBF approximations. In our numerical experiments, the indicator function
method was always superior to the weighted graph approach.

6 Conclusions

The DTV filter has been presented as a method to remove Gibbs oscillations
from global RBF approximations of discontinuous functions. The oscillatory
approximants could arise from a interpolation problem or from a numerical
PDE problem. Without the need for separate edge detection methods, the
DTV filter sharply resolves discontinuities and improves the overall accuracy
of an oscillatory RBF approximation in a robust, computationally efficient
manner. Numerical examples show the effectiveness of DTV filtering for
scattered RBF approximations.
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Issues that arise in RBF approximations with scattered nodes that are
not present in structured pseudospectral approximations have been iden-
tified. An effective choice of a neighborhood, Nα, in two dimensions was
identified. The use of an indicator function η was shown to be effective in
selecting which points in a widely scattered data set receive postprocessing.

A fundamental difference between Gibbs oscillations in pseudospectral
and RBF methods was identified. The oscillations in RBF approximations
of discontinuous functions are more localized than those in pseudospectral
approximants.
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Figure 1: Left: N = 79 RBF approximation (oscillatory) of function (17)
vs. exact on grid indicated by dots at the bottom of the image. Right:
Convergence of DTV post-processed RBF approximation of function (17).
From top to bottom, N = 39, 79, 159.
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Figure 2: Left: Convergence of RBF approximation of function 17. From top
to bottom, N = 39, 79, 159. Right: Chebyshev approximation of function
17, N = 39, 79, 159
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Figure 3: Left: RBF approximation (oscillatory) using the MQ RBF with
c = 15 vs. exact on the N = 100 grid indicated by dots at the bottom of the
image. Right: Exact (dotted) vs. postprocessed (solid) RBF approximation
of function (18) with λ = 15 after 100 iterations taking 0.03 second.

Figure 4: Left: A neighborhood Nα (filled circles) resulting from choosing
the eight closest points to α. Such a neighborhood can result in a poor
postprocessing due to points clustering on one side of α. Right: Eight point
neighborhood Nα of the point α (the square in the center) chosen by selecting
the closest point to α in each of eight regions. Filled circles are in Nα, open
circles are not.
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Figure 5: Left: From viewpoint (180, 0) the MQ RBF approximant with c =
18 on scattered points (left image of figure 7). Right: DTV postprocessed
with λ = 12 after 40 iterations taking 3 second.
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Figure 6: From viewpoint (−0.5, 6), absolute value of errors from figure 5
approximants. Left: RBF. Right: Postprocessed RBF
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Figure 7: Left: N = 2047 scattered points on the unit circle. Right: N =
1126 scattered points on a complexly shaped domain.
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Figure 8: Contour plot of function 20.
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Figure 9: Left: MQ RBF approximation, c = 18, of function 20 (on scattered
points from left image of figure 7). Right: DTV postprocessed with λ = 25
after 50 iterations.
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Figure 10: Left: φ(r) = r3 approximation of function (21) on the distribution
of points in the left image of figure 7. Right: Indicator function (23) for the
approximation in the left image.
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Figure 12: Left: Standard DTV filtering, five iterations with λ = 18. Right:
DTV filtering activated where the indicator function is greater than 0.2.
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