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Abstract

Gaussian Radial Basis Function (RBF) interpolation methods are
theoretically spectrally accurate. However, in applications this accu-
racy is seldom realized due to the necessity of solving a very poorly
conditioned linear system in order to evaluate the methods. Recently,
by using approximate cardinal functions and restricting the method
to a uniformly spaced grid (or a smooth mapping thereof), it has been
shown that the Gaussian RBF method can be formulated in a matrix
free framework that does not involve solving a linear system [1]. In this
work we differentiate the linear system-free Gaussian (LSFG) method
and use it to solve Partial Differential Equations on unbounded do-
mains that have solutions that decay rapidly and that are negligible at
the ends of the grid. As an application, we use the LSFG collocation
method to numerically simulate Bose-Einstein Condensates.

Keywords : RBF interpolation, RBF collocation for PDEs, Numerical
PDEs, Bose-Einstein Condensates

1 Introduction

Over the last 25 years, RBF methods have become an important tool for the
interpolation of scattered data and for solving Partial Differential Equations
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[2]. RBF methods that employ infinitely differentiable basis functions that
contain a free parameter are theoretically spectrally accurate. The imple-
mentation of RBF methods involves solving a linear system that is extremely
ill-conditioned when the parameters of the method are such that the best ac-
curacy is theoretically realized. Thus, in applications, RBF methods are not
able to produce as accurate of results as they are theoretically capable of.

For appropriately chosen interpolation sites in 1d, the non-polynomial
RBF methods are known to be equivalent to polynomial methods in the
limit as the shape parameter goes to zero [3]. RBF methods with small
values of the shape parameter have been evaluated with “bypass” algorithms
[4] that evaluate the method without solving the associated ill-conditioned
linear systems. The bypass algorithms are applicable only for use with a small
number of interpolation sites and thus are not well suited for applications.
However, the bypass algorithms have been used to show that RBF methods
are often more accurate than polynomial based methods when a small, non-
zero value of the shape parameter is used.

Unlike polynomial based methods, with RBF methods it is not possible
to rearrange the basis functions into an equivalent cardinal basis which re-
duces the interpolation matrix in the new basis to the identity matrix. It has
been recently shown [1] that if the Gaussian RBF interpolation method is
restricted to a uniform grid, that an approximate cardinal basis can be used
to efficiently implement the method without any loss of accuracy. With the
approximate cardinal approach, the Gaussian RBF method can be accurately
implemented with very small values of the shape parameter where it is most
accurate. In this work we use the approximate cardinal approach to approx-
imate derivatives and to numerically solve nonlinear time-dependent PDEs.
As a particular application, we use the linear system-free Gaussian (LSFG)
collocation method to numerically simulate the motion of Bose-Einstein Con-
densates.

We note that there also exists a linear system-free Gaussian method for
use with equally spaced centers on bounded domains [5]. The method in [5] is
based on the connection of the RBF method to polynomial methods and on
potential theory rather than on the approximate cardinal function approach
of [1].
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2 Gaussian RBF interpolation

The RBF interpolation method uses linear combinations of translates of one
function φ(r) of a single real variable. Given a set of centers xc

1, . . . ,x
c
N in

R
d, the RBF interpolant takes the form

s(x) =
N
∑

j=1

λjφ(
∥

∥x− xc
j

∥

∥

2
). (1)

Many different basis functions φ(r) have been used, but we concentrate on
the Gaussian RBF

φ(r) = e−ǫ2r2 (2)

where ε > 0 is a free parameter called the shape parameter. The coeffi-
cients, λ, are chosen by enforcing the interpolation condition

s(xi) = f(xi) (3)

at a set of nodes that typically coincide with the centers. Enforcing the
interpolation condition at N centers results in a N ×N linear system

Bλ = f (4)

to be solved for the RBF expansion coefficients λ. The matrix B with entries

bij = φ(
∥

∥xc
i − xc

j

∥

∥

2
), i, j = 1, . . . , N (5)

is called the interpolation matrix or the system matrix. For distinct
center locations, the system matrix for the GA RBF is known to be nonsin-
gular [6] if a constant shape parameter is used. To evaluate the interpolant
at M points xi using (1), the M ×N evaluation matrix H is formed with
entries

hij = φ(
∥

∥xi − xc
j

∥

∥

2
), i = 1, . . . ,M and j = 1, . . . , N. (6)

Then the interpolant is evaluated at the M points by the matrix multiplica-
tion

fa = Hλ. (7)

Theoretically, RBF methods are most accurate when the shape parame-
ter is small. However, the use of small shape parameters results in system
matrices that are very poorly conditioned. The by now very established fact
that in RBF methods we cannot have both good accuracy and good con-
ditioning at the same is known as the uncertainty principle [7]. Recent
books [8, 9, 2, 10] on RBF methods can be consulted for more information.
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3 Linear system-free Gaussian (LSFG) RBF

interpolation

The LSFG interpolation method [1] is restricted to application on a 1d infi-
nite grid with uniform spacing h. This simplification is so that all cardinal
functions are simply translations of a master basis function, such as is the
case for the sinc basis [11, 12]. The Gaussian RBF (2) is reformulated to
incorporate the grid spacing as

φ(r) = e−[α2/h2]r2. (8)

The shape parameter ε in the direct method and the parameter α are related
by the equation

α = hε. (9)

The motivation behind deriving approximate cardinal functions for the
Gaussian RBFs is that RBF methods exhibit error saturation [9]. In
particular, for a method employing a basis function of the form (8), the error
in approximating a given function converges to a nonzero function

Es(α) ≈ 4 exp(−π2/α2)

as h → 0 for fixed α. The error saturation is smaller than machine epsilon
(ǫm = 2.2×10−16) for α < 1/2. Due to the error saturation, an exact cardinal
function is unnecessary. All that is needed is an approximate cardinal func-
tion that approximates the exact cardinal function with an error less than
Es. In [1], the approximate cardinal function

C(X) ≈ α2

π

sin(πX)

sinh(α2X)
(10)

is derived that approximates the exact cardinal function with error

Ec ≈ 4 exp(−2π2/α2)

which is the square of the saturation error and is less than machine epsilon
for α < 0.726. The approximate cardinal function (10) reduces to the sinc
function

sinc(X) =
sin (πX)

πX
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as α→ 0 [1]. Because the error in the approximation of the master cardinal
function is the square of the error saturation, there is no penalty for using
the approximations to obtain linear system-free interpolating RBF approxi-
mations. Thus, the linear system-free Gaussian RBF interpolant is

f(x) ≈ α2

π

N
∑

j=1

f
(

xcj
) sin (π[x− xcj ]/h)

sinh (α2[x− xcj ]/h)
α < 0.726, (11)

where the N centers xc have uniform spacing h.
To apply the LSFG method on a finite interval, the infinite domain is

truncated to a large finite grid that is chosen sufficiently wide so that the
function being approximated has negligible amplitude at the ends of the grid.
The function being approximated must be sufficiently small near boundaries
since the cardinal functions near the endpoints of a finite grid, for which no
explicit approximation is known, are different from those for an unbounded
grid. If the function being approximated is sufficiently small near the bound-
ary, the cardinal functions near the boundary have negligible coefficients,
and the function can be approximated entirely and accurately by the inte-
rior approximate cardinal functions. The LSFG method can be applied on a
nonuniform grid by using a mapping of the uniform grid to a nonuniform grid
as is commonly done with pseudospectral methods [11]. The LSFG method
is applied on tensor product grids in higher dimension.
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Figure 1: The graph of function (13)
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4 Derivative approximation

Formulas for the elements of the LSFG differentiation matrices, D, are found
by differentiating the interpolant (11) and then evaluating the result at the
N centers. Derivatives of a function f(x) at the centers are approximated
by the matrix-vector product Df(x).

0 0.2 0.4 0.6
10

−5

10
0

10
5

α

|e
rr

or
|

 

 

LSFG
direct

0 10 20 30 40
10

−5

10
0

10
5

|e
rr

or
|

ε

 

 

LSFG
direct

Figure 2: N = 70, maximum error in calculating derivatives of function
(13) by the direct method and the LSFG method. Left: error versus the α
parameter. Right: error versus the equivalent shape parameters.

Let
rij = xci − xcj = h(i− j) (12)

be the signed distance between centers, µij = (α2rij)/h, and ρij = (πrij)/h.
The first-order LSFG differentiation matrix D1 has elements

dij =
α2

π
csch(µij)

[

π cos(ρij)− α2coth(µij) sin(ρij)

h

]

for i 6= j and dij = 0 for i = j. The LSFG second-order differentiation matrix
D2 has elements for i 6= j

dij =
α2

π
csch(µij)

[−2α2π cos(ρij)coth(µij) + (α4 − π2 + 2α4csch2(µij)) sin(ρij)

h2

]

and for i = j

dij = −α
4 + π2

3h2
.
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Figure 3: Convergence trend in calculating the first derivative of function
(13) with N = 60, 70, 80, 90 respectively from top to bottom.

Due to the structure of the LSFG differentiation matrices, it is not necessary
to form the entire differentiation matrix, nor is a O (N2) operation count
matrix by vector product necessary to evaluate a derivative. LSFG differ-
entiation matrices have a Toeplitz structure (constant along the diagonals).
Additionally, odd order LSFG differentiation matrices are skew-symmetric
and even order LSFG differentiation matrices are symmetric. Thus, only
the first row or column of the differentiation matrix needs to be formed and
then the Fast Fourier Transform (FFT) algorithm can be efficiently used to
evaluate a derivative approximation in O (N logN) floating point operations.
Reference [13] can be consulted for details. A Matlab function that uses the
FFT to evaluate the first and second derivatives of a function f(x) is in
listing 1. The Toeplitz structure and symmetry properties of the LSFG dif-
ferentiation matrices are enjoyed by the sinc method differentiation matrices
as well.

The function

f(x) = sin(50πx)e−100(x−1/2)2 , x ∈ [0, 1] (13)

is an example of a function for which the LSFG method is applicable as it
has a negligible size of O (10−10) near the boundaries. The graph of function
(13) is shown in figure 1. Figure 2 compares the accuracy in calculating
the first derivative of function (13) by the LSFG method and the direct
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Listing 1: LsfgDiffFFT.m
� �

1function Df = m f g d i f f f f t ( f , a , xc , d)

3% Inputs :
% f func t ion va lues on a even ly spaced g r i d

5% a the RBF alpha parameter in d e f i n i t i o n (8)
% xc N even ly spaced cente r s

7% d d e r v i a t i v e order , d = 1 or 2
% Output :

9% Df LSFG de r i v a t i v e approximation of f at t he cente r s xc

11f = f ( : ) . ’ ; xc = xc ( : ) . ’ ; % Ensure f and xc are row ve c t o r s
N = length ( f ) ;

13h = abs ( xc (2)−xc ( 1 ) ) ;
r = xc (1) − xc ;

15% Compute f i r s t row of the d i f f e r e n t i on matrix
i f d==1

17row1 = (( a ˆ2)/( h∗pi ) )∗ csch ( ( ( a ˆ2)∗ r )/h ) . ∗ ( pi∗cos ( ( pi∗ r )/h) − . . .
( a ˆ2)∗ coth ( ( ( a ˆ2)∗ r )/h ) . ∗ sin ( ( pi∗ r )/h ) ) ;

19row1 ( find ( isnan ( row1 ) ) ) = 0 ;
e l s e i f d==2

21row1 = (( a ˆ2)/( pi∗hˆ2))∗ csch ( ( ( a ˆ2)∗ r )/h ) .∗ . . .
( −2∗(a ˆ2)∗ pi∗cos ( ( pi∗ r )/h ) . ∗ coth ( ( ( a ˆ2)∗ r )/h) + . . .

23( aˆ4 − piˆ2 + 2∗( a ˆ4)∗ csch ( ( ( a ˆ2)∗ r )/h ) . ˆ 2 ) . ∗ sin ( ( pi∗ r )/h) ) ;
row1 ( find ( isnan ( row1 ) ) ) = −(aˆ4 + pi ˆ2)/(3∗h ˆ2 ) ;

25end

27% Imbed f i r s t row of the Toep l i t z matrix in to a b i g g e r c i r c u l an t matrix :

29row = [ row1 zeros (1 ,2ˆnextpow2(2∗N)−2∗N+1) ((−1)ˆd )∗ f l i p l r ( row1 ( 2 :N ) ) ] ;

31% Mul t ip ly c i r c u l an t matrix t imes vec tor using the FFT:

33M = length ( row ) ;
ew = M∗ i f f t ( row ) ; % e i g enva l ue s o f c i r c u l an t matrix

35f hat = f f t ( [ f zeros (1 ,M−N) ] ) ; % FFT of a padded data vec tor
Df = i f f t (ew .∗ f hat ) ; % mul t i p l y the r e s u l t by ew ’ s

37Df = Df ( 1 :N) ’ ; % take inv e r s e FFT

39i f max(abs (imag( f ) ) ) == 0 ; % Real data in , r e a l d e r i v a t i v e out
Df = real (Df ) ;

41end
� �
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Figure 4: N = 70, maximum error over a range of α parameter in calculating
derivatives of function (13). Left: first derivative. Right: second derivative.

Gaussian RBF method that solves linear system (4). The direct method
has a minimum error of 1.5e-2 at α = 0.385 (ε = 26.565) while the LSFG
method has a minimum error of 5.1e-5 at α = 0.275 (ε = 18.975). The direct
method is unable to accurately evaluate the solution for ε < 26.565 due to
the system matrix of the method being very ill-conditioned. The convergence
trend in approximating the first derivative of function (13) as N is increased
is illustrated in figure 3. The error is measured in the infinity norm.

Next we compare the accuracy, in approximating the first and second
derivative of function (13), of the LSFG method and the sinc method, to
which the LSFG method is equivalent to as α → 0. Matlab code for imple-
menting the sinc method is found in [14]. The results are illustrated in figure
4. The first derivative results are in the left image of the figure where the
smallest LSFG error is 5.1e-5 with α = 0.275 and the sinc error is 2.7e-3.
The second derivative results are shown in the right image of the figure. The
smallest LSFG method error is 9.1e-4 with α = 0.275 and the sinc error
is 3.2e-2. RBF methods are often more accurate, with some small shape
parameter greater than zero, then are their limiting method as the shape
parameter goes to zero.
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5 Time-dependent PDEs
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Figure 5: The solution of equation (14) at time t = 20.

After the space derivatives of a time-dependent PDE are discretized with
the LSFG method, a method of lines approach is taken, and the remaining
system of ordinary differential equations

ψt = F (ψ, t)

is advanced in time with an ODE method. In the numerical examples we
have used a fourth-order Runge-Kutta method.

The dimensionless Gross–Pitaevskii (also called a nonlinear Schrödinger
equation) equation is

iψt + τ∇2ψ − V (x)ψ − β |ψ|2 ψ = 0 (14)

where V (x) is an external trap potential and the quantity |ψ(x)|2 represents
a particle density. The Gross–Pitaevskii equation can be used to model
Bose–Einstein condensates (BEC) which are a state of matter of a dilute gas
of weakly interacting bosons confined in an external potential and cooled
to temperatures very near to absolute zero. Under such conditions, a large
fraction of the bosons collapse into the lowest quantum state of the external
potential, and all wave functions overlap each other, at which point quantum
effects become apparent on a macroscopic scale. The state of matter was
first predicted by Satyendra Nath Bose and Albert Einstein in 1924. The

10



−20 −10 0 10 20
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

x

|e
rr

or
|

−15 −10 −5 0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

x

|e
rr

or
|

Figure 6: Left: Pointwise errors of 1d Gross–Pitaevskii problem at t = 1 on
intervals of three different sizes with h = 1/15 and ε = 1.25 (α = 0.0835).
Right: Convergence as N is increased and the shape parameter is held fixed
at ε = 1.25.

phenomenon was observed for the first time in 1995, and is now the subject
of intense theoretical and experimental study [15].

As an accuracy check we start with a 1d example that has an exact
solution. We take equation (14) with V (x) = 0, τ = 1, and β = 8. The
initial condition is ψ(x, 0) = sech(x). The problem is defined on the real
line, but numerically the domain is truncated to a finite interval Ω = [−A,A]
that is large enough so that the rapidly decaying solution does not reach the
boundary. The choice of A is discussed later. The exact solution of the
problem is ψ(x, t) = a+ bi where

a =
cosh(x)

[

4 cos(t) cosh2(x) + 3 cos(t) cos(8t)− 3 cos(t)− 3 sin(t) sin(8t)
]

4 cosh4(x)− 3 + 3 cos2(4t)

and

b =
cosh(x)

[

3 cos(t) sin(8t) + 4 sin(t) cosh2(x) + 3 sin(t) cos(8t)− 3 sin(t)
]

4 cosh4(x)− 3 + 3 cos2(4t)
.

The solution is called a breather solution which is a localized periodic solution
with a soliton structure. The solution at time t = 20 is shown in figure 5.

The next numerical experiment is to gain insight about the effect of the
size of the computational interval. The problem is discretized on intervals of
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Figure 7: 2d Gross–Pitaevskii equation (14) solution. BEC widths versus
time with N = 80, ∆t = 0.0025 and α = 0.1.

three different sizes with A = 10, A = 15, and A = 20. The shape parameter
is taken to be ε = 1.25 and with each interval N is chosen so that h = 1/15.
With A = 10, the magnitude of the initial condition at the interval endpoints
is 9.1e-5, with A = 15 it is 6.1e-7, and for A = 20 it is 4.1e-9. In figure 6 it
can be seen that the error in boundary regions is proportional to the size of
the PDE solution at the boundary in this example.

Next, we take A = 15 and fix the shape parameter at ε = 1.25 and
examine the convergence of the method as N is increased. As N is increased
α is adjusted according to equation (9) so that ε remains fixed. The plot
of the pointwise error as N takes the values N = 150, 200, 250, 300, 250, is
shown in the right image of figure 6. For each N , the errors are virtually
identical near the boundary and the errors decay on the interior as N is
increased.

5.1 2d example

The next two examples, taken from reference [16], are examples of the Gross–
Pitaevskii equation modeling BECs. In [16], a split-step Fourier method was
used. To quantify the numerical results we calculate the condensate widths
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along the x, y, and z axes as defined by

σ2
η =

∫

Rd

η2 |ψ(x, t)|2 dx η = x, y, z. (15)

The trapezoid rule has been used to evaluate the integrals.
The 2d example takes equation (14) with

V (x, y) = (x2 + 2y2)/2,

τ = 1/2, and β = 2. The initial condition is

ψ(x, y, 0) =
21/4√
2π
e−[(x2+2y2)/4].

The domain is Ω = [−8, 8]2. The condensate widths are shown in figure 7.
The example is the same as example 2, case IV, from reference [16]. An
analytical solution to the problem is not known. The LSFG method solution
with N = 80, ∆t = 0.0025, and α = 0.1 is visually identical to the split-step
Fourier solution with N = 512 and ∆t = 0.001 that is given in [16]. Contour
plots for the 2d BEC example are shown in figure 8. For the contour plots,
only the portion of the domain ([−3, 3]2) where the BEC is trapped is shown.
Despite not knowing the contour levels that were used in [16], the contour
plots from the LSFG solution are qualitatively similar to the plot given in
reference [16].

5.2 3d example

The 3d example sets up equation (14) with

V (x, y, z) = (x2 + 4y2 + 16z2)/2,

τ = 1/2, and β = 1/10. The initial condition is

ψ(x, y, z, 0) =
81/4

√

(π/4)3/4
e−2(x2+2y2+4z2)

and the domain is Ω = [−8, 8]3. The setup is the same as case I of example 4
in reference [16]. The condensate widths for N = 120 are shown in figure 9.
In moving from N = 80, to N = 100, and to N = 120, it is apparent that the
solution has become independent of the grid. The results are qualitatively
the same as the results in the left image of figure 10 in reference [16].

13



6 Conclusions

Methods for PDE problems on infinite domains fall into three broad cate-
gories [11, Chapter 17]: domain truncation, basis functions suited to an in-
finite interval such as sinc or Hermite functions, or mapping the unbounded
interval to a bounded interval and then using a bounded interval approach
such as the Chebyshev or Fourier pseudospectral method. Most, but not all
methods, require the solution of the problem to decay sufficiently fast for
large |x|.

Of the methods for infinite interval problems, the LSFG method is most
closely related to the sinc method to which it is equivalent in the limit α→
0. The LSFG method shares the desirable properties of the sinc method,
such as being able to efficiently approximate derivatives using the FFT in
O (N logN) flops. The LSFG method may be viewed as a sinc method with
a tunable parameter that often affords greater accuracy than the standard
sinc method. In many cases, such as in the example in section 4, the LSFG
method is more accurate with some small α > 0, than is the sinc method.

In comparison with the Gaussian RBF method from which the LSFG
method was derived, the LSFG method is less flexible in that it can only be
applied on uniformly spaced grids in 1d and on tensor product grids of the
1d grid in higher dimensions. However, the LSFG method may be mapped
to non-uniform grids if desired. The LSFG method eliminates the O (N3)
operation count setup phase of solving a linear system that is required by
the direct method. The LSFG method accurately handles small shape pa-
rameters, for which the RBF method is most accurate, that are unreachable
by the direct RBF method. The direct RBF method evaluates a deriva-
tive in a O (N2) matrix multiplication while the LSFG method needs only
O (N logN) flops.

References

[1] J. P. Boyd and L. Wang. An analytic approximation to the cardinal
functions of gaussian radial basis functions on an infinite lattice. Applied
Mathematics and Computation, 215(6):2215–2223, 2009. (document), 1,
3, 3, 3

14



[2] S. A. Sarra and E. J. Kansa. Multiquadric Radial Basis Function Ap-

proximation Methods for the Numerical Solution of Partial Differential

Equations. Tech Science Press, 2010. 1, 2

[3] R. Schaback. Limit problems for interpolation by analytic radial basis
functions. Journal of Computational and Applied Mathematics, 212:127–
149, 2008. 1

[4] B. Fornberg and G. Wright. Stable computation of multiquadric inter-
polants for all values of the shape parameter. Computers and Mathe-

matics with applications, 48:853–867, 2004. 1

[5] R. Platte and T. Driscoll. Polynomials and potential theory for gaus-
sian radial basis function interpolation. SIAM Journal on Numerical

Analysis, 43(2):750–766, 2005. 1

[6] C. Micchelli. Interpolation of scattered data: Distance matrices and
conditionally positive definite functions. Constructive Approximation,
2:11–22, 1986. 2

[7] R. Schaback. Error estimates and condition numbers for radial basis
function interpolation. Advances in Computational Mathematics, 3:251–
264, 1995. 2

[8] M. D. Buhmann. Radial Basis Functions. Cambridge University Press,
2003. 2

[9] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World
Scientific, 2007. 2, 3

[10] H. Wendland. Scattered Data Approximation. Cambridge University
Press, 2005. 2

[11] J. Boyd. Chebyshev and Fourier Spectral Methods. Dover, second edition,
2000. 3, 3, 6

[12] F. Stenger. Summary of sinc numerical methods. Journal of Computa-

tional and Applied Mathematics, 121:379420, 2000. 3

[13] G. Strang. A proposal for Toeplitz matrix calculations. Studies in

Applied Mathematics, 74:171–176, 1986. 4

15



[14] J. Weideman and S. Reddy. A MATLAB differentiation matrix suite.
ACM Transactions on Mathematical Software, 26:465–519, 2000. 4

[15] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute

Gases. Cambridge University Press, second edition, 2008. 5

[16] W. Bao, D. Jaksch, and P. A. Markowich. Numerical solution of the
Gross-Pitaevskii equation for Bose-Einstein condensation. Journal of

Computational Physics, 187:318–342, 2003. 5.1, 5.1, 5.2

16



x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 8: 2d Gross–Pitaevskii equation (14), contour plots of |ψ(x, y, t)|2 at
times: t = 0, t = 0.85, t = 1.7, t = 2.55, t = 3.4, and t = 6.8.
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Figure 9: 3d Gross–Pitaevskii equation (14), BEC widths versus time with
N = 120, ∆t = 0.001, and α = 0.1.

18


	Introduction
	Gaussian RBF interpolation
	Linear system-free Gaussian (LSFG) RBF interpolation
	Derivative approximation
	Time-dependent PDEs
	2d example
	3d example

	Conclusions

