
Radial Basis Function approximation methods

with extended precision floating point

arithmetic

Scott A. Sarra

Marshall University

May 21, 2010

Abstract

Radial Basis Function (RBF) methods that employ infinitely differ-
entiable basis functions featuring a shape parameter are theoretically
spectrally accurate methods for scattered data interpolation and for
solving Partial Differential Equations. It is also theoretically known
that RBF methods are most accurate when the linear systems as-
sociated with the methods are extremely ill-conditioned. This often
prevents the RBF methods from realizing spectral accuracy in ap-
plications. In this work we examine how extended precision floating
point arithmetic can be used to improve the accuracy of RBF meth-
ods in an efficient manner. RBF methods using extended precision
are compared to algorithms that evaluate RBF methods by bypassing
the solution of the ill-conditioned linear systems.

Keywords : RBF interpolation, RBF collocation for PDEs, extended pre-
cision floating point arithmetic

1 Introduction

IEEE 64-bit floating-point arithmetic (double precision) is sufficiently accu-
rate for most scientific applications. However, for a rapidly growing body of

1

important scientific computing applications, a higher level of numeric pre-
cision is required. These applications include supernova simulations, cli-
mate modeling, planetary orbit calculations, Coulomb n-body atomic sys-
tems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator
theory, quantum field theory, and experimental mathematics [1, 2]. In this
work, we show that Radial Basis Function (RBF) approximation methods
are another area that benefit from extended numerical precision.

In reference [3], numerical experiments with Elliptic PDEs were per-
formed using Mathematica’s arbitrary precision package with 100-digit ac-
curacy to gain some insight into the connection between the accuracy of the
RBF method method using the inverse multiquadric RBF, maximum grid
spacing, and the shape parameter. The authors determined that for a given
grid spacing, an optimal value of the shape parameter exists whose value
should not be decreased unless the grid spacing was refined. Also in [3], the
authors concluded that in order to achieve optimal accuracy and efficiency
in solving elliptic boundary value problems, it is better to use a relatively
coarse grid and extended precision than standard precision and a fine grid.
The authors in [3] present an extended precision calculation using a software
package written in the C++ programming language that is available at [4].
They conclude that while promising, that since extended precision compu-
tations with C++ is relatively new, further investigation in this direction
is needed. In this work we continue to investigate whether extended preci-
sion calculations using C++ can improve the accuracy and efficiency of RBF
methods.

2 Radial Basis Function Approximation

In this section the RBF interpolation method and the RBF asymmetric col-
location method (Kansa’s method) [5] for the solution of steady PDEs are
summarized. Over the last 25 years, RBF methods have become an im-
portant tool for the interpolation of scattered data and for solving Partial
Differential Equations [6]. Recent books [7, 8, 6, 9] on RBF methods can be
consulted for more information.

The RBF interpolation method uses linear combinations of translates of
one function φ(r) of a single real variable. Given a set of centers xc

1, . . . ,x
c
N

2

Name of RBF Definition

Multiquadric (MQ) φ(r, ǫ) =
√
1 + ǫ2r2

Inverse Multiquadric (IMQ) φ(r, ǫ) = 1/
√
1 + ǫ2r2

Inverse Quadratic (IQ) φ(r, ǫ) = 1/(1 + ǫ2r2)

Gaussian (GA) φ(r, ǫ) = e−ǫ2r2

Table 1: Global, infinitely smooth RBFs containing a shape parameter.

in R
d, the RBF interpolant takes the form

s(x) =

N
∑

j=1

αjφ(
∥

∥x− xc
j

∥

∥

2
, ε) (1)

where

r = ‖x‖2 =
√

x2
1 + · · ·+ x2

d.

We focus on RBFs φ(r) that are infinitely differentiable and that contain a
free parameter, ε, called the shape parameter. Some examples from this class
of RBF are listed in table 1. In all the numerical examples, we have used the
MQ which is representative of this class and is popular in applications. The
coefficients, α, are chosen by enforcing the interpolation condition

s(xi) = f(xi) (2)

at a set of nodes that typically coincide with the centers. Enforcing the
interpolation condition at N centers results in a N ×N linear system

Bα = f (3)

to be solved for the MQ expansion coefficients α. The matrix B with entries

bij = φ(
∥

∥xc
i − xc

j

∥

∥

2
), i, j = 1, . . . , N (4)

is called the interpolation matrix or the system matrix. For distinct center
locations, the system matrix for the RBFs in table 1 is known to be nonsin-
gular [10] if a constant shape parameter is used. To evaluate the interpolant
at M points xi using (1), the M × N evaluation matrix H is formed with
entries

hij = φ(
∥

∥xi − xc
j

∥

∥

2
), i = 1, . . . ,M and j = 1, . . . , N. (5)

3

Then the interpolant is evaluated at the M points by the matrix multiplica-
tion

fa = Hα. (6)

Next we describe the RBF collocation method for steady, linear PDEs.
The steady problem is

Lu = f in Ω (7)

where L is a linear differential operator. Boundary conditions are applied on
the boundary, ∂Ω, by a boundary operator, B. Let Ξ be set of N distinct
centers that are divided into two subsets. One subset contains NI centers,
xc
I , where the PDE is enforced and the other subset contains NB centers,

xc
B, where boundary conditions are enforced. For simplicity, it is assumed

that the centers are in an array that is ordered as Ξ = [xc
I ; x

c
B]. The RBF

collocation method applies the operator L to the RBF interpolant (1) as

Lu(xc
i) =

N
∑

j=1

αjLφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = 1, . . . , NI , (8)

at the NI interior centers and applies the operator B which enforces boundary
conditions as

Bu(xc
i) =

N
∑

j=1

αjBφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = NI + 1, . . . , N (9)

at the NB boundary centers. In matrix notation, the right side of equations
(8) and (9) can be written as Hα, where the evaluation matrix H that
discretizes the PDE consists of the two blocks

H =

[

Lφ
Bφ

]

. (10)

The two blocks of H have elements

(Lφ)ij = Lφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = 1, . . . , NI j = 1, . . . , N

(Bφ)ij = Bφ(
∥

∥xc
i − xc

j

∥

∥

2
), i = NI + 1, . . . , N j = 1, . . . , N.

The expansion coefficients are then found by solving the linear system

Hα = f (11)

4

and the approximate solution of the PDE is

ua = Bα

where B is the N × N system matrix with elements given by equation (4).
The evaluation matrix H cannot be shown to be invertible in all cases. In
fact, examples have been constructed in which the evaluation matrix is sin-
gular [11]. Depending on the differential operator L, the functions used to
form the matrix H may not even be radial. Despite the lack of a firm the-
oretical underpinning, extensive computational evidence indicates that the
matrix H is very rarely singular and the asymmetric method has become
well-established for steady problems.

Scattered data RBF error estimates involve a quantity called the fill dis-

tance,
h = hΞ,Ω = sup

x∈Ω
min
x
c
j
∈Ξ

∥

∥x− xc
j

∥

∥

2
. (12)

The fill distance indicates how well the set of centers, Ξ, fills out the domain,
Ω. Geometrically, the fill distance is the radius of the largest possible empty
ball that can be placed among the centers in the domain. The error estimate
[12]

| f(x)− s(x)| ≤ Kη1/(εh), (13)

where K is an arbitrary positive constant and 0 < η < 1, has been shown
to hold for scattered data interpolation. The estimate (13) shows that spec-
tral (or exponential) convergence results as either the fill distance or shape
parameter go to zero.

In order to get the accuracy given by the estimate (13), the shape pa-
rameter and/or the fill distance must be small. When the shape parameter
and/or the fill distance are small, both the system matrix for the interpola-
tion problem and the evaluation matrix for the steady PDE problem become
very ill-conditioned and the accurate solution of the linear systems (3) and
(11) become difficult when using standard numerical methods. A condition
number is used to quantify the sensitivity to perturbations of a linear system
and to estimate the accuracy of a computed solution [13]. Using the 2 norm,
the matrix condition number is

κ(B) = ‖B‖2
∥

∥B−1
∥

∥

2
=

σmax

σmin

(14)

where σ are the singular values of B. A well-conditioned matrix will have a
small condition number κ(B) ≥ 1, while an ill-conditioned matrix will have

5

a large condition number. In general, as the condition number increases by
a factor of 10, it is likely that one less digit of accuracy will be obtained in
a computed solution (often called the condition number rule of thumb). The
fact that in RBF methods we cannot have both good accuracy and good
conditioning at the same time has been dubbed the uncertainty principle

[14].
Typically, in RBF methods the error decreases monotonically with de-

creasing ε and/or decreasing fill distance until some point where ill-conditioning
prevents further error decay. With a further decrease in ε and/or fill distance,
the error curve begins to oscillate and then eventually increase. We use the
term optimal shape parameter to mean the shape parameter than produces
the smallest error for a fixed N . This optimal shape will depend on both the
algorithms used and on the precision of the floating point arithmetic that is
employed.

3 Floating Point Arithmetic

In this section we review some properties of floating point arithmetic and list
some properties of the floating point types that we use later. The book [15]
can be consulted for more details on IEEE floating point arithmetic.

Virtually all present-day computer systems, from personal computers to
the largest supercomputers, implement the IEEE 64-bit floating-point arith-
metic standard (referred to as a double), which provides approximately 16
decimal digits of accuracy. The 64-bit standard is efficiently implemented us-
ing computer hardware. Extended (more accurate than double but of fixed
length) and arbitrary (user specified length) types are implemented using
software and thus incur a performance penalty compared to the double type.
The algorithms for fixed extended precision can be made significantly faster
than those for arbitrary precision. Table 2 summaries some of the properties
of the floating point types that we use later in the numerical experiments.
The table includes the binary precision (p) which is the number of bits in the
mantissa, the decimal precision (dps) which is the number of accurate deci-
mal places, and machine epsilon (εm). The two precisions are approximately
related by the expression p ≈ 3.333 × dps. In table 2, the execution times of
the double calculations have been normalized to be one. In our experiments
double-double calculations required approximately 10 times longer computer
time than did double calculations and quad-double required an additional

6

type bits εm p dps exec time
double 64 2.2× 10−16 53 16 1
double-double 128 2.4× 10−32 106 32 10
quad-double 256 3.0× 10−64 212 64 100

Table 2: Information on floating point types.

factor of 10. However, much more favorable comparison times have been
given in [1].

In this work we have used freely available C++ QD (double-double and
quad-double types) package [4]. The packages implement the basic arithmetic
operations (add, subtract, multiply, divide, square root) and common tran-
scendental functions in extended precision. Modifying existing C++ software
to implement the extended precision is in must cases trivial and only requires
an include statement and a define statement such as the following:

#include <qd/dd_real.h>

#define double dd_real

4 Numerical Results

The numerical runs were performed on a Dell Studio XPS 1640 laptop with an
Intel Core 2 Duo T9800 2.93 GHz processor with 8 GB of RAM and running
64-bit Windows Vista. The C++ code was compiled to 64-bit executables
using the freely available Microsoft Visual Studio 2008 Express Edition. All
execution time results are from taking the average execution time from a
large number (> 50) of runs. All linear systems were solved with Gaussian
elimination with scaled partial pivoting [13]. The root mean square (RMS)
errors were calculated by the formula

RMS =

√

√

√

√

N
∑

i=1

(exacti − numericali)2/N.

4.1 1d Interpolation

The convergence of RBF methods can be achieved in several ways. Theoret-
ically, the error will decay if the minimum shape distance is decreased (or

7

N is increased which is equivalent in most cases) while the shape parameter
is held constant. A theoretical error decay will also occur if the number of
centers N is fixed and the shape parameter, ε, is refined towards zero. This
type of convergence is unique to RBF methods as a parallel does not exist in
polynomial based methods. An error estimate for both approaches is given
by equation (13).

We use the function
f(x) = esin (πx) (15)

on the interval [−1, 1] in our one dimensional examples. The interpolants are
formed with various N evenly spaced centers and then evaluated at M = 298
evenly spaced evaluation points. The examples are used to illustrate various
features of the RBF interpolation method and the results of using extended
precision.

4.1.1 fixed N , refined ε

0 1 2 3 4 5

10
−20

10
−10

10
0

shape parameter, ε

R
M

S
 e

rr
or

N = 80

0 1 2 3 4 5

10
20

10
40

10
60

shape parameter, ε

κ(
B

)

N = 80

d
dd
qd

Figure 1: Left: RMS error versus the shape parameter from interpolating
function (15). Right: condition numbers of the system matrix B versus the
shape parameter.

Although somewhat problem dependent, if a generalization could be made
about the accuracy of RBF methods it would be that typically, the best

8

method |error| optimal ε time κ(B)
d 6.3e-9 1.85 4.9e-3 1.6e18
dd 9.4e-14 1.05 3.1e-2 1.2e34
qd 1.5e-21 0.55 3.0e-1 1.4e66

Table 3: Execution times, errors, and optimal shape parameters for interpo-
lating function (15).

accuracy from RBF methods will be achieved with a shape parameter that
results in a system matrix that is “critically conditioned” [6]. Critically

conditioned means that the system matrix (or the evaluation matrix when
solving steady PDE problems) has a condition number with the highest order
of magnitude that varies smoothly as a function of the shape parameter.
With the double type this range is κ(B) = O (1016). If, for fixed N , the
shape parameter is decreased further, the calculated condition number will
cease to be computed accurately and will oscillate between O (1017) and
O (1020). Note that the optimal shape parameter, as we have defined it,
may produce a system matrix with a condition number in the oscillatory
range. For instance, in table 3 the optimal double shape parameter is listed
as ε = 1.85, while the method is critically conditioned for approximately
4.0 ≤ ε ≤ 4.5. However, computational results from the oscillatory range are
unpredictable. More reliable and “near optimal” results can be obtained from
the critical range as can be seen in figure 1. With double-double precision
the critically conditioned range is κ(B) = O (1032), and with quad-double
the range is κ(B) = O (1064).

The condition number rule of thumb applied to this situation would indi-
cate that in the critically conditioned range for each floating point type that
the calculated RBF expansion coefficients would have zero decimal places of
accuracy. However, this is another instance where the errors are “diabolically
correlated”, as the famous pioneering numerical analyst J. H. Wilkinson used
to describe. The RBF expansion coefficients may not be accurately calcu-
lated when the method is critically conditioned, but compensating errors in
other parts of the method result in the method being very accurate overall.

9

0 100 200 300 400
10

−20

10
−15

10
−10

10
−5

10
0

N

R
M

S
 e

rr
or

ε = 5

qd
dd
d

0 20 40 60 80 100
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

N
R

M
S

 e
rr

or

ε = 2

ε = 0.75

ε = 1

Figure 2: Left: RMS error versus the shape parameter from interpolating
function (15). Right: RMS error versus N using quad-double precision and
with various shape parameters.

4.1.2 fixed ε, refined N

In the left image of figure 2, the double calculation with ε = 5 has a steady
error decay up to approximately N = 100 at which it has an O (10−8) error.
However, due to the poor conditioning of the system matrix it is not possible
to get further accuracy by increasing N . Double-double convergence begins
to slow after N = 250, while the quad-double error continues to decay rapidly
up to the largest N tested, which was N = 350. While extend precision
allows RBF methods to be very accurate with large N (or small h), the
most important benefit of extended precision with RBF methods may be the
extreme accuracy that can be obtained with small N and relatively large
minimum separation distance. This is illustrated in the right image of figure
2 with quad-double precision. With ε = 0.75 and N = 30 the error is
O (10−10). With N = 60, 16 decimal places of accuracy are realized, and
with N = 100 the error is O (10−24).

4.1.3 hybrid interpolation

Both N and ε may be varied in a hybrid approach which is often taken in
applications. The shape parameter is adjusted with changing N so that the

10

system matrix remains critically conditioned (as described in section 4.1.1).
In practice it is of course inefficient to calculate condition numbers so they
are either estimated [16] or else a strategy is used to calculate the shape
parameter, based on the minimum separation distance, that leads to the
method being close to critically conditioned. Figure 3 illustrates the results

0 20 40 60 80 100
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

N

R
M

S
 e

rr
or

d
dd
qd

Figure 3: RMS error in interpolating function (15) versus N (hybrid interpo-
lation)

from interpolating function (15) using the three precisions with N varying
from 10 to 100 in increments of 5. With the hybrid approach, convergence
with double precision ceases at about N = 40 with an O (10−6) error. Above
N = 40, the increase in shape parameter that corresponds to increasing N
in order to prevent the system matrix from becoming too poorly conditioned
also prevents any further increase in accuracy. The double-double error decay
begins to cease aboutN = 60 with an O (10−14) error. The quad-double error
is still decaying up to N = 100 and is approximately O (10−24).

4.1.4 mixed precision

All computations in the previous examples were carried out in the same pre-
cision. These include calculating the distance between centers, evaluating the

11

basis functions, solving the linear systems, and evaluating the interpolants.
If accuracy of less than or equal to the fifteen decimal places afforded by dou-
ble precision is desired, it may be questionable as to whether it is necessary
to go to the expense of performing all calculations in extended precision. Is
it possible to only solve the ill-conditioned systems (3) and (11) in extended
precision and perform all other calculation in double precision? In some in-
stances [17] mixed precision calculations have proven effective. This does not
appear to be the case with RBF methods.

In figure 4 the results are illustrated from using the standard double type
to calculate the distance between centers, B, and f and the double-double
type to calculate α. The expansion coefficients α are then converted to dou-
bles and the interpolant is evaluated in double precision. Taking a mixed
precision approach in this example reduces the accuracy to that comparable
to an all double precision calculation. This can be explained by the fact that
when the RBF methods become critically conditioned, the size of the expan-
sion coefficients become very large. Evaluating the RBF interpolant involves
summing the product of the expansion coefficients and basis functions which
evaluate to small numbers when using small shape parameters. If the basis
functions are not also evaluated using extended precision, the accumulated
loss of accuracy from the coefficient by basis function product significantly
decreases the accuracy of the approximation. For example, with N = 100
and ε = 1.05 which produces the smallest error with double-double precision
in figure 1, the size of the expansion coefficients are O (1015).

4.2 2d Interpolation

As a two dimensional example we use the function

f(x, y) =
3

4
e[

−1

4
(9x−2)2− 1

4
(9y−2)2] +

3

4
e[

−1

49
(9x+1)2− 1

10
(9y+1)2]

+
1

2
e[

−1

4
(9x−7)2−−1

4
(9y−3)2] − 1

5
e[−(9x−4)2−(9y−7)2] (16)

that Franke [18] considered in his 1982 test of scattered data approxima-
tion methods. The function has become a standard test for scattered data
interpolation methods. A surface plot of the function is shown in figure 6.

The domain for the example is a circle of radius 0.25. In the example,
the number of uniformly spaced centers N is increased from 30 to 390 in
increments of 30. For each N , the interpolant is evaluated at M = 441

12

0 1 2 3 4 5

10
−15

10
−10

10
−5

10
0

shape parameter, ε

R
M

S
 e

rr
or

N = 100

mixed
dd
d

Figure 4: Mixed floating point types. RMS error in interpolating function
(15) versus the shape parameter. Mixing types results in comparable accu-
racy to double accuracy

evaluation points. The RMS errors and execution times are recorded in table
4. Figure 5 illustrates the center and evaluation point layout with N = 60.
Figure 7 shows the RMS error versus the shape parameter using N = 300.

If eight accurate decimal places are desired, the accuracy can be achieved
with either a double computation with N = 330 in 3.9e-2 second or with a
double-double computation with N = 120 in 0.1 second. If extreme accuracy,
such as fourteen decimal places is desired, quad-double precision with N ≥
300 must be used. Approximately one decimal place of accuracy is gained
with each addition of 30 centers until the system (3) becomes too poorly
conditioned for the trend to continue. The trend continues until N = 90
with the double type, indicating that for larger N the condition number of
the system matrix is above O (1016). The convergence trend continues until
N = 300 with the double-double type which indicates that for larger N the
condition number of the system matrix is above O (1032). With all N used
(up to N = 390) the trend continues with quad-double precision indicating
that the condition number of the system matrix remains under O (1064).

13

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

0.3

x

y

N = 60

Figure 5: N = 60 centers marked with asterisks and M = 441 evaluations
points marked with dots for the Franke function (16) interpolation example.

4.3 Extended Precision versus “bypass” algorithms

The term bypass algorithm refers to an algorithm that evaluates a RBF ap-
proximation without solving the linear system (3) or (11). Methods that
work with the linear systems are usually called direct methods. In [19], an
algorithm called the Contour-Padé (cp) algorithm is described for evaluating
RBF approximation methods that avoids working directly with the associ-
ated ill-conditioned linear systems. The algorithm stably calculates the RBF
approximant for small values of the shape parameter ε that cannot be han-
dled by direct methods using double precision. The algorithm is severely
limited by the restriction that it only works with a small number of centers
(usually N < 80).

Next we use an example to compare the Contour-Padé algorithm to the
direct method with extended precision. We approximate the first order par-
tial derivative with respect to x of the function f(x, y) = exp(x/2+y/4) using
the 60 scattered centers in figure 8. The approximation is evaluated at the
center that is located at approximately (0.7487,-0.1156) and is marked with
an asterisk in figure 8. The resulting error plots versus the shape parameter
are shown in figure 9. The execution times, RMS errors, and optimal shape
parameters for the example are in table 5. Both the double-double and quad-
double extended precision direct methods are more accurate in this example
than the Contour-Padé algorithm.

14

execution time, secs RMS error/optimal shape
N d dd qd d dd qd
30 1.6e-3 2.0e-2 2.6e-1 2.0e-4/1.6 2.0e-4/1.6 2.0e-4/1.6
60 2.2e-3 3.5e-2 5.2e-1 5.8e-5/1.05 5.7e-5/1.05 5.7e-5/1.05
90 2.8e-3 6.4e-2 8.9e-1 6.7e-7/1.5 1.7e-7/1.3 1.7e-7/1.3
120 3.8e-3 1.0e-1 1.3 5.9e-7/1.5 8.9e-9/1.0 8.9e-9/1.0
150 1.0e-2 1.6e-1 2.0 1.9e-7/1.55 1.7e-9/0.95 1.7e-9/0.95
180 7.5e-2 1.9e-1 2.5 7.0e-8/2.2 2.5e-10/0.85 2.5e-10/0.85
210 1.1e-2 3.3e-1 4.0 2.3e-8/2.5 1.2e-11/0.95 1.2e-11/0.95
240 1.5e-2 4.7e-1 5.4 2.8e-8/2.55 2.8e-12/1.05 9.8e-13/0.8
270 2.1e-2 6.2e-1 7.0 1.2e-8/2.75 1.4e-12/1.0 1.4e-13/0.7
300 2.5e-2 8.3e-1 9.0 1.3e-8/2.35 5.4e-13/1.4 6.0e-15/0.75
330 3.9e-2 1.0 11.4 8.4e-9/2.85 4.6e-13/1.2 1.5e-15/0.75
360 4.4e-2 1.3 14.2 8.3e-9/2.8 5.9e-13/1.4 1.3e-16/0.7
390 4.6e-2 1.6 17.5 5.3e-9/2.8 2.6e-13/1.45 5.6e-17/0.8

Table 4: Execution times, RMS errors, and optimal shape parameters for the
2d interpolation example using the Franke function (16)

method |error| optimal ε time
d 3.2e-7 0.175 2.9e-3
cp 7.2e-10 0.120 3.8e-1
dd 9.5e-11 0.08 1.2e-2
qd 8.9e-11 0.005 1.4e-1

Table 5: Execution times, errors, and optimal shape parameters for the first
bypass algorithm example. See figure 9 for more information.

15

−0.5
0

0.5

−0.4−0.200.20.4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

xy

Figure 6: Franke’s function.

A second bypass algorithm is the RBF-QR method. The RBF-QR al-
gorithm [20] stably evaluates RBF methods in the special case of when the
domain is the surface the surface of a sphere. Unlike the Contour-Padé algo-
rithm, the RBF-QR algorithm is not limited to a small number of centers. In
[21], the RBF-QR algorithm is extended to work with Gaussian RBFs in two
dimensions. For accuracy and use with large N, the 2d RBF-QR algorithm
requires the use of extended precision. If double-double precision arithmetic
is used within the algorithm, the upper limit on N is about 2700 centers. If
accuracy of the order O (10−6) is sufficient, the limit goes up to about 6000
centers if double-double precision floating point arithmetic is used. We test
the RBF-QR algorithm with the largest N that was used with the Franke
function example. We use the Matlab version of the RBF-QR algorithm that
is available electronically on the web site of the second author of reference
[21].

The RBF-QR algorithm executes in 465 seconds with N = 390, ε = 1.45,
and has an RMS error of 2.9e-12. For comparison, the C++ code using
double-double precision with N = 390 and ε = 1.45 executes in 1.6 seconds
and has an RMS error of 2.6e-13. An efficiently written C++ version of
the RBF-QR algorithm would improves it’s efficiency, but in the code that

16

1 2 3 4 5

10
−15

10
−10

10
−5

10
0

shape parameter, ε

R
M

S
 e

rr
or

N = 300

d
dd
qd

Figure 7: RMS errors versus the shape parameter for the Franke function
interpolation example with N = 300.

is publicity available the algorithm programmed in Matlab does not seem
viable for use in applications. The C++ extended precision double-double
direct method code is 290 times faster as well as slightly more accurate.

4.4 Steady PDEs

As a two dimensional steady PDE example we consider the Poisson problem

uxx + uyy = (λ2 + µ2)e(λx+µy), (x, y) ∈ Ω (17)

u(x, y) = e(λx+µy), (x, y) ∈ ∂Ω

with λ = 1, µ = 2, and a domain Ω taken to be the unit circle. The exact
solution is u(x, y) = e(λx+µy).

The accuracy results, execution times, and optimal shape parameters for
problem (17) are listed in table 6 for various N and three floating point
precisions. The N centers are uniformly spaced as shown for N = 300 in
figure 10. In this example, increasing precision from double to double-double
results in execution times being approximately 10 times slower. Increasing

17

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Figure 8: The Contour-Padé algorithm evaluates ∂f/∂x at the center marked
with the asterisk and is compared to the accuracy of the direct method with
various floating point precisions.

0 0.1 0.2 0.3

10
−10

10
−8

10
−6

10
−4

shape parameter, ε

|e
rr

or
|

cp
d
dd
qd

Figure 9: Standard and extended precision Gaussian Elimination and
Contour-Padé error versus the shape parameter for approximating ∂f/∂x
of function f(x, y) = exp(x/2 + y/4) at the point (0.74874,-0.11558) that is
marked in figure 8.

18

execution time, secs RMS error/optimal shape
N d dd qd d dd qd
20 3.9e-4 1.8e-3 1.6e-2 3.1e-2/0.035 2.5e-2/0.003 2.1e-2/0.002
30 5.9e-4 3.9e-3 4.1e-2 2.9e-3/0.1 2.1e-3/0.008 2.1e-3/0.0001
60 1.7e-3 2.0e-2 1.9e-1 4.8e-4/0.2 8.2e-5/0.04 5.0e-5/0.02
75 2.8e-3 3.0e-2 3.1e-1 6.4e-4/0.23 3.1e-5/0.08 5.4e-6/0.03
90 5.6e-3 4.7e-2 4.9e-1 1.7e-4/0.3 3.7e-6/0.08 9.6e-7/0.04
150 1.7e-2 1.7e-1 1.7 1.1e-4/0.42 2.3e-8/0.18 2.0e-10/0.08
225 4.8e-2 4.9e-1 4.7 3.6e-5/0.55 3.7e-9/0.17 3.9e-14/0.04
300 1.0e-1 9.2e-1 9.7 5.4e-5/0.58 1.3e-9/0.2 0/0.06
400 2.3e-1 2.3 - 1.0e-5/0.75 3.2e-10/0.27 -
500 4.3e-1 4.1 - 8.0e-6/0.76 2.1e-10/0.27 -
1000 3.3 29.2 - 5.9e-6/1.23 1.9e-11/0.39 -

Table 6: Execution times, RMS errors, and optimal shape parameters for the
steady PDE problem 17

precision from double-double to quad-double results again results in a factor
of 10 execution penalty. With a goal of five accurate decimal places, double-
double with N = 90 is the most efficient choice with an error of 3.7e-6 and an
execution time of 4.7e-2 seconds. To obtain five accurate decimal places with
double precision we need N = 500 which executes in 4.3e-1 seconds. If more
than five accurate decimal places are desired, double-double or quad-double
precision must be used as the goal can not be achieved in double precision.
With N = 300 (right image of figure 11) the quad-double calculation is
accurate to more than 16 decimal places. In this example we did not record
accuracy results of more than 16 decimal places.

In table 6 we see the extreme accuracy that is possible when using ex-
tended precision. However, many scientists and engineers do not need RMS
errors on the order of machine epsilon, but rather just several decimal places
of accuracy. In our final experiment, we consider some moderate error goals
between 1e-3 and 1e-7 and find the minimum N needed to achieve the accu-
racy goal. The results along with execution times are recorded in table 7. If
an error of no more that 1e-3 can be tolerated, the standard double precision
calculation is the most efficient. However, with the four other more stringent
accuracy goals, the double-double calculations are the most efficient. When
using standard double precision, the two most stringent accuracy goals can

19

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

N = 300

Figure 10: N = 300 centers for the 2d Poisson problem (17).

not be achieved.

5 Conclusions

In summarizing the current state of and the evolution of computer technology
and floating point arithmetic, the author of reference [15] concludes that “In-
evitably, 256-bit floating point will become the standard eventually.” RBF
methods will certainly benefit in the future from this predicted hardware

accuracy N execution time, secs
goal d dd qd d dd qd
1e-3 53 38 38 1.6e-3 4.0e-3 4.2e-2
1e-4 196 53 53 4.5e-2 9.2e-3 9.3e-2
1e-5 490 79 71 4.3e-1 3.2e-2 2.0e-1
1e-6 - 105 90 - 6.3e-2 4.9e-1
1e-7 - 145 105 - 1.6e-1 7.3e-1

Table 7: The number of centers needed to meet accuracy goals and the
execution times for the steady PDE problem 17.

20

0 0.2 0.4 0.6 0.8 1
10

−10

10
−5

10
0

10
5

shape parameter, ε

R
M

S
 e

rr
or

N = 150

d
dd
qd

0 0.2 0.4 0.6 0.8 1

10
−10

10
−5

10
0

shape parameter, ε
R

M
S

 e
rr

or

N = 300

d
dd
qd

Figure 11: RMS errors versus the shape parameter for the steady PDE prob-
lem (17). Left: N = 150. Right: N = 300.

implementation of more accurate floating point arithmetic. Until processors
evolve to handle such precision in hardware, the RBF method can benefit
from efficiently implemented software extended precision.

The high computational overhead associated with arbitrary precision with
large dps ≥ 100 results in tools that currently are not efficient enough to be
used in most applications. Fortunately, the extended precision double-double
and quad-double types can be implemented more efficiently and are able to
dramatically improve the accuracy of the RBF methods. In the numerical
experiments, double-double calculations took approximately 10 times longer
to execute than double calculations, and quad-double 10 times longer than
double-double. However, reference [1] reports that it is more typical for
double-double calculations to take 5 times longer than double calculations,
and quad-double to 5 times longer than double-double. The difference in
results is most likely due to the choice of compilers or choice of optimization
flags.

If extreme accuracy is desired and if the theoretical spectral convergence
rates are to be achieved, extended precision is a must. In many cases using
extended precision may even be more efficient. Extended precision may pro-
duce a smaller error with small N and execute more quickly than standard
precision software with large N . This was the case in our steady PDE exam-

21

ple. Domain decomposition will be an important tool to use with extended
precision on higher dimensional problems in order to keep N sufficiently small
so that the extended precision execution times are comparable to standard
precision times with larger N .

Mixing numerical precisions, e.g., solving the ill-conditioned linear sys-
tems (3) and (11) in extended precision while performing all other compu-
tations in double precision, did not improve on standard double precision
results in our examples. A typical result of using mixed precision was given
in section 4.1.4. All parts of the approximation must take place in extended
precision in order to reap accuracy benefits. The availability of a C++ ex-
tended precision RBF package that calculates distance matrices, evaluates
basis functions and their derivative, performs necessary linear algebra, etc.,
would undoubtedly be beneficial to the development of RBF methods and
further increase the popularity and application of the methods.

Bypass algorithms evaluate the RBF approximate without directly work
with the linear systems (3) and (11). The Contour-Padé algorithm is ap-
plicable in the case of a small numbers of centers. In our numerical exam-
ple the double-double solution of linear system was more accurate than the
Contour-Padé algorithm using double precision. Extended precision could be
used within the Contour-Padé algorithm as well, but the algorithm includes
the solution of multiple linear systems and using extended precision would
increase the execution time dramatically. The other bypass algorithm, the
RBF-QR method was not as accurate as the direct double-double method for
the Franke function example and the execution time of the RBF-QR method
in this example indicated it was not viable for use in applications. In [21], the
authors suggest that the algorithm be implemented with extended precision
with large N in order to improve accuracy. However, performing the QR
factorization within the method in extended precision would further increase
the execution time. One of the most attractive features of RBF methods is
their simplicity. Working with the RBF method is as simple as setting up
and evaluating a linear system. While the mathematics of the bypass algo-
rithms are interesting and often elegant, they add a great deal of complexity
to the RBF method in order to recast an ill-conditioned linear system in a
different light. Our experience suggests that the rather inelegant and brute
force approach of extend precision is much easier to implement and also often
more accurate and efficient.

In this work, we have examined the costs and benefits of using extended
precision floating point arithmetic in RBF interpolation methods and in RBF

22

methods for steady PDEs. Many questions remain about eigenvalue stability
for RBF methods for time-dependent PDEs [22, 23]. Extended precision
may be of benefit to RBF methods for time-dependent PDEs and will be
explored in future work. Additionally, it has been previously suggested by
the second author in [6] that RBF methods are an appropriate tool for the
numerical solution of high dimensional (d ≥ 4) PDEs. The use of extended
precision with RBF methods may afford the use of relatively small N to
achieve moderate accuracy for this class of problem.

References

[1] D. H. Bailey. High-precision arithmetic in scientific computation. Com-

puting in Science and Engineering, pages 54–61, 2005. 1, 3, 5

[2] D. H. Bailey and Jonathan M. Borwein. High-precision computation
and mathematical physics. To appear in XII Advanced Computing and

Analysis Techniques in Physics Research, 2008. 1

[3] C.-S. Huang, C.-F. Leeb, and A.H.-D. Cheng. Error estimate, optimal
shape factor, and high precision computation of multiquadric collocation
method. Engineering Analysis with Boundary Elements, 31:614–623,
2007. 1

[4] D. Bailey, Y. Hida, X. Li, and B. Thompson. High precision software.
http://crd.lbl.gov/ dhbailey/mpdist/. 1, 3

[5] E. J. Kansa. Multiquadrics - a scattered data approximation scheme
with applications to computational fluid dynamics II: Solutions to
parabolic, hyperbolic, and elliptic partial differential equations. Com-

puters and Mathematics with Applications, 19(8/9):147–161, 1990. 2

[6] S. A. Sarra and E. J. Kansa. Multiquadric Radial Basis Function Ap-

proximation Methods for the Numerical Solution of Partial Differential

Equations. Tech Science Press, 2010. 2, 4.1.1, 5

[7] M. D. Buhmann. Radial Basis Functions. Cambridge University Press,
2003. 2

[8] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World
Scientific, 2007. 2

23

[9] H. Wendland. Scattered Data Approximation. Cambridge University
Press, 2005. 2

[10] C. Micchelli. Interpolation of scattered data: Distance matrices and
conditionally positive definite functions. Constructive Approximation,
2:11–22, 1986. 2

[11] Y. C. Hon and R. Schaback. On unsymmetric collocation by radial basis
function. Applied Mathematics and Computations, 119:177–186, 2001. 2

[12] W. R. Madych and S. A. Nelson. Bounds on multivariate interpolation
and exponential error estimates for multiquadric interpolation. Journal
of Approximation Theory, 70:94–114, 1992. 2

[13] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, first
edition, 1997. 2, 4

[14] R. Schaback. Error estimates and condition numbers for radial basis
function interpolation. Advances in Computational Mathematics, 3:251–
264, 1995. 2

[15] M. Overton. Numerical Computing with IEEE Floating Point Arith-

metic. SIAM, 2001. 3, 5

[16] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997. 4.1.3

[17] X. S. Li, J. W. Demmel, D. H. Bailey, and G. Henry. Design, imple-
mentation and testing of extended and mixed precision BLAS. ACM

Transactions on Mathematical Software, 20(2):152–205, 2002. 4.1.4

[18] R. Franke. Scattered data interpolation: Tests of some methods. Math-

ematics of Computation, pages 181–200, 1982. 4.2

[19] B. Fornberg and G. Wright. Stable computation of multiquadric inter-
polants for all values of the shape parameter. Computers and Mathe-

matics with applications, 48:853–867, 2004. 4.3

[20] B. Fornberg and C. Piret. A stable algorithm for flat radial basis func-
tions on a sphere. SIAM Journal of Scientific Computing, 30:60–80,
2007. 4.3

24

[21] B. Fornberg, E. Larsson, and N. Flyer. Stable computations with Gaus-
sian radial basis functions in 2-d. Submitted to SIAM Journal of Scien-

tific Computing, 2009. 4.3, 5

[22] R. Platte and T. Driscoll. Eigenvalue stability of radial basis functions
discretizations for time-dependent problems. Computers and Mathemat-

ics with Applications, 51:1251–1268, 2006. 5

[23] S. A. Sarra. A numerical study of the accuracy and stability of sym-
metric and asymmetric RBF collocation methods for hyperbolic PDEs.
Numerical Methods for Partial Differential Equations, 24(2):670 – 686,
2008. 5

25

	Introduction
	Radial Basis Function Approximation
	Floating Point Arithmetic
	Numerical Results
	1d Interpolation
	fixed N, refined
	fixed , refined N
	hybrid interpolation
	mixed precision

	2d Interpolation
	Extended Precision versus ``bypass'' algorithms
	Steady PDEs

	Conclusions

