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Radial Basis Function (RBF) methods have become important tools for scattered data 
interpolation and for solving partial differential equations (PDEs) in complexly shaped 
domains. When the underlying function is sufficiently smooth, RBF methods can produce 
exceptional accuracy. However, like other high order numerical methods, if the underlying 
function has steep gradients or discontinuities the RBF method may/will produce solutions 
with non-physical oscillations. In this work, a rational RBF method is used to approximate 
derivatives of functions with steep gradients and discontinuities and to solve PDEs with 
such solutions. The method is non-linear and is more computationally expensive than the 
standard RBF method. A modified partition of unity method is discussed as an way to 
implement the rational RBF method in higher dimensions.

© 2018 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Rational methods based on polynomials have a long history in approximation theory. Polynomial based rational meth-
ods are well-known for more accurately approximating functions with poles, steep gradients, and discontinuities than are 
polynomial methods. Examples of polynomial based rational methods are extensive and include [3,9,14]. Most polynomial 
based rational methods are of course tied to the same restrictive grids as are the algebraic or trigonometric polynomial 
methods that they are based on and thus are difficult or impossible to apply in complexly shaped domains. However, the 
recently described AAA algorithm [15] which employees polynomials appears much more flexible than previously described 
polynomial based rational methods and it is applicable in complexly shaped domains.

Previously described RBF methods that have a rational form include what the authors call a rescaled RBF method [4,12]. 
While the authors of [4,12] do not explicitly use the term rational, their scaled method has a rational form in which 
the denominator is the RBF interpolant to the constant function one and the numerator is the normal RBF interpolant. 
Reference [10] introduces a rational Radial Basis Function (RBF) method for the purpose of having a rational method that 
is applicable for the interpolation of scattered data points located in complexly shaped domains. In this work the method 
of [10] is extended to approximate derivatives and to solve partial differential equations with solutions featuring steep 
gradients, discontinuities, and shocks. In order to efficiently implement the method in higher dimensions, the method is 
localized via a modified partition of unity approach.
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2. Radial basis function methods

RBF interpolation uses a set of N distinct points X = {xc
1, . . . , x

c
N } in Rd called centers. No restrictions are placed on the 

shape of problem domains. The only restrictions on the center locations is that they must be unique. A RBF

φ(x) = φ(
∥∥x − xc

∥∥
2 , ε), x, xc ∈ Rd (1)

is an infinitely differentiable (compactly supported and global RBFs without a shape parameter and with less smoothness 
exist but are not considered in this work) function of one variable r = ∥∥x − xc

∥∥
2 that is centered at xc and that contains a 

free parameter ε called the shape parameter. The RBF interpolant assumes the form

IN f (x) =
N∑

k=1

akφ
(∥∥x − xc

k

∥∥
2 , ε

)
(2)

where a is a vector of expansion coefficients. The inverse quadratic (IQ) RBF

φ(r) = 1

1 + ε2r2
(3)

is used throughout in all examples. The IQ is a representative member of the class of strictly positive definite, global, 
infinitely differently RBFs that have a shape parameter. This class of RBF interpolates sufficiently smooth functions from the 
RBF’s native space with exponential accuracy [6, chapters 14 and 15].

The expansion coefficients are determined by enforcing the interpolation conditions

IN f (xc
k) = f (xc

k), k = 1,2, . . . , N (4)

which result in a N × N linear system

Ba = f . (5)

The matrix B with entries

b jk = φ(

∥∥∥xc
j − xc

k

∥∥∥
2
, ε), j,k = 1, . . . , N (6)

is called the system matrix. The evaluation of the interpolant (2) at M points x j is accomplished by multiplying the expan-
sion coefficients by the M × N evaluation matrix H that has entries

h jk = φ(
∥∥x j − xc

k

∥∥
2 , ε), j = 1, . . . , M and k = 1, . . . , N. (7)

By linearity, the RBF interpolant can be differentiated as

D (IN f (x)) =
N∑

k=1

akDφ
(∥∥x − xc

k

∥∥
2 , ε

)
(8)

where D is a linear differential operator. The operator D may be a single differential operator or a linear differential operator 
such as the Laplacian. Evaluating (8) at the centers X can be accomplished by multiplying the expansion coefficients by the 
evaluation matrix HD with entries

h jk = Dφ(

∥∥∥xc
j − xc

k

∥∥∥
2
, ε), j,k = 1, . . . , N. (9)

That is, D f ≈ HDa. Alternatively, derivatives can be approximated by multiplying the vector of function values at the center 
locations 

{
f (xc

k)
}N

k=1 by the differentiation matrix D = HDB−1 since

D f ≈ HDa = HD(B−1 f ) = (HDB−1) f . (10)

Both equations (5) for the expansion coefficients and (10) for the differentiation matrix assume that the system matrix 
is invertible. The IQ system matrix is symmetric positive definite (SPD) and thus invertible. While invertible, the system 
matrix is typically very poorly conditioned. For a fixed set of centers, the shape parameter affects both the accuracy of 
the method and the conditioning of the system matrix. The RBF method is most accurate for smaller values of the shape 
parameter where the system matrix is ill-conditioned. The attainable error of the RBF method and the condition number 
of the system matrix cannot both be kept small [23] when the standard basis functions are used. Other formulations, for 
example in references [7] and [5], of the RBF method that use a different basis that spans the same space as the standard 
basis but results in a better conditioned linear system do exist and are applicable is some applications. The methods are 
referred to as RBF-QR methods as a QR factorization is featured prominently in the approach. Reference [21] compares and 



S.A. Sarra, Y. Bai / Applied Numerical Mathematics 130 (2018) 131–142 133
contrasts the application of the standard RBF method using both double and extended precision with the RBF-QR methods 
and applies the methods to a suite of numerical examples. For simplicity, this work only employs the standard RBF method. 
However, it is possible to replace the standard RBF method with the RBF-QR method in the rational RBF method that is 
described in this manuscript. Doing so may significantly improve the accuracy of the method but it would also add a great 
deal of complexity and increase computational expense of the method.

Recent monographs [2,6,22,28] on RBF methods can be consulted for more information.

3. A rational RBF method

The rational RBF method assumes an expansion of the form

RN f (x) = p(x)

q(x)
(11)

that is subject to the interpolation conditions

RN f (xc
k) = f (xc

k), k = 1,2, . . . , N.

The numerator p(x) and denominator q(x) of the expansion are the standard RBF interpolants

p(x) =
N∑

k=1

ap
k φ

(∥∥x − xc
k

∥∥
2 , ε

)
and

q(x) =
N∑

k=1

aq
kφ

(∥∥x − xc
k

∥∥
2 , ε

)
to the vectors �p and �q which will be defined momentarily. In order for the rational interpolant to be uniquely defined, 
an extra condition is imposed which causes the native space semi-norms of the standard RBF interpolants p(x) and q(x)
that are respectively the numerator and denominator of the rational interpolant to be minimized. That is, for example 
for the numerator p(x), the quantity (ap)∗Bap or equivalently (�p)∗B−1 �p, is made as small as possible where B is the 
system matrix, ap are the RBF expansion coefficients of �p, and �p is the data being interpolated. The condition leads to a 
minimization problem with the solution �q that is the eigenvector corresponding to the smallest eigenvalue of the eigenvalue 
problem

S�q = λ�q (12)

where

S = diag

(
1/

(
f 2

‖ f ‖2
�2

+ 1

))(
D B−1 D

‖ f ‖2
�2

+ B−1

)
(13)

and where f = [
f (xc

1), . . . , f (xc
N )

]
contains the function values at the center locations, D is a diagonal matrix with f on the 

diagonal, B is the RBF system matrix, and ‖ f ‖2
�2

= ∑N
k=1 f 2

k . Additionally in (13), the notation f 2 represents an elementwise 
squaring of the elements of the vector f and the division is elementwise as well. Since the RBF system matrix is SPD, so is 
the matrix S. After �q is found, then the vector �p is �p = D�q.

Once �p and �q are found, their standard RBF interpolants are formed by solving two linear systems, Bap = �p and Baq = �q, 
for the expansion coefficients. The interpolants are evaluated by two matrix multiplications and the rational interpolant is 
then evaluated via

RN f (x) = Hap

Haq

where the division is element-wise and H is the RBF evaluation matrix (7).
The system matrix B may be very poorly conditioned. The system matrix may be efficiently regularized [19] by the 

method of diagonal increments (MDI) so that the condition number is reduced and so that it remains numerically SPD 
and can be factorized by a Cholesky factorization. Without MDI regularization, it is possible for a theoretically SPD but 
ill-conditioned matrix to not be SPD in floating point arithmetic which causes a Cholesky factorization to fail and forces 
the use of a more expensive LU factorization. MDI is a potential regularization tool for both the standard and rational RBF 
method. However, it has not been used to produce any of the numerical results in order to keep the focus on the rational 
method itself.

The rational interpolation method is summarized in Algorithm 1. Following the verbal description of each step is Matlab 
[13] code that executes the step.
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Algorithm 1. Rational RBF interpolation.

Inputs B , N × N system matrix based on centers xc . H , M × N evaluation matrix based on evaluation points x. f , N × 1
vector containing the function values at the center locations. ε, the RBF shape parameter. μ, an optional regular-
ization parameter for the MDI.

Output fr , a M × 1 vector containing the values of the RBF rational interpolant evaluated at the evaluation points x.

In step 6 of Algorithm 1 the minimal eigenvector can be efficiently found using Arpack [11]. Arpack is available in 
major scientific software packages such as Matlab where it is available via the eigs function. The eigs function is passed 
two additional options to indicate that the problem is real and symmetric. Additionally, the eigs function uses a tolerance 
for determining the minimal eigenvector. The default value of the tolerance parameter is 1e-14 and this value was used 
in all cases. In all the numerical examples, the matrix S was slightly less ill-conditioned than the system matrix B , but S
is still typically ill-conditioned. Despite the poor conditioning of S , the eigs function successfully calculated the minimal 
eigenvector in all examples.

Derivatives are calculated by applying the quotient rule to the rational interpolant. For instance, a partial derivative with 
respect to x based on the interpolant from step 9 of Algorithm 1 is calculated as

fx = ( (B*pAlpha).*(Hx*pAlpha) - (B*pAlpha).*(Hx*qAlpha) )./(B*qAlpha).^2;

where B is the system matrix and Hx is a derivative evaluation matrix (9).
Fig. 1 illustrates the results of using both the standard RBF (SRBF) method and the rational RBF (RRBF) method to 

interpolate a discontinuous step function. With a small number of centers (left image of Fig. 1) the SRBF method exhibits 
severe oscillations while the RRBF method only has a minor overshoot at the discontinuity. As N increases the RRBF method 
is both more accurate at the point of discontinuity and is significantly more accurate away from the discontinuity.

The results of Fig. 1 indicate that the rational RBF method may have advantages over the standard RBF method in approx-
imating discontinuous functions, but both methods have sizable errors in the immediate neighborhood of the discontinuity. 
In order to illustrate the behavior of the two methods in approximating smooth functions, the methods are used to inter-
polate the function f (x) = exp(sin(πx)) on the interval [−1, 1]. Non-uniformly spaced centers that cluster mildly near the 
boundaries are used which are specified by the formula

xc
k = −arcsin [0.999 cos((k − 1)π/(N − 1))]

, k = 1,2, . . . , N. (14)

arcsin(0.999)
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Fig. 1. Interpolation of a discontinuous function with the IQ RBF by the standard RBF method and the rational RBF method. Left: N = 10 evenly spaced 
centers, and shape parameter ε = 0.45. Right: pointwise errors for N = 80 and ε = 3.5. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 2. Interpolation of the smooth function f (x) = exp(sin(πx)) by the standard and rational RBF methods. Left: execution time versus the number of 
centers N . Right: maximum errors versus N .

For each N , a shape parameter is used that results in a system matrix with a O
(
1016

)
condition number. The interpolants 

are evaluated at 200 evenly spaced points. In the left image of Fig. 2 execution times versus N are shown indicating that for 
interpolation problems the rational method takes approximately 10 times longer to execute than does the standard method. 
In the right image of the figure the rational method is shown to be slightly more accurate than the standard method in this 
example over the entire range of N that is used.

In time-dependent PDE problems with a fixed set of centers and the same shape parameter for each time step, the setup 
phase can be calculated once before beginning time stepping, and then only steps from four on need to be completed during 
each time step. For differentiation both the standard and rational methods have the same flop count for the setup phase. 
The setup phase of the rational Algorithm 1 consists of steps one through three which have a combined dominant flop 
count term of 4

3 N3. The setup phase of the standard method consists of factorizing the system matrix and then using the 
factorization to form the differentiation matrix. Next the first derivative of the function f (x) = exp(sin(πx)) is approximated 
by both methods using the same centers and shape parameters as the previous interpolation problem. The range of N is 
typical for 1d problems as well as for stencil or patch sizes of local methods in 2d or 3d. For each N the derivatives were 
calculated a thousand times and then the execution times were averaged. The right image of Fig. 3 shows the accuracy 
of the two methods versus N and the rational method is again slightly more accurate with each N . The left image of the 
figure shows the average execution times in which the rational method is significantly more computationally expensive. 
The differences in execution times are due to the standard method only requiring one matrix–vector multiplication whereas 
the rational method requires five matrix–vector multiplications, two forward substitutions, two back substitutions, and 
the solution of one eigenvalue problem. For smooth problems the small accuracy gains may not be worth the additional 
computation expense. However, for problems with discontinuities and steep fronts the rational method may be significantly 
more accurate and the additional computational expense may be justified.
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Fig. 3. First derivative approximation of the smooth function f (x) = exp(sin(πx)) by the standard and rational RBF methods. Left: execution time versus 
the number of centers N . Right: maximum errors versus N .

4. Efficient extension to higher dimensions

In order to efficiently implement the RRBF method in higher dimensional time-dependent PDE problems where deriva-
tives may need to be evaluated thousands of times it is necessary to localize the method. The localization method used is 
a modified partition of unity method (PUM). In the context of scattered data interpolation, it appears that a partition of 
unity method was first described in [8] and was later analyzed in more detail in [27]. Reference [1] details the application 
of the PUM to the numerical solution of PDEs by the finite element method. Recently the PUM method has been used [17]
to implement a local RBF collocation method based on the SRBF method for the numerical solution of PDEs.

A partition of unity method is implemented by constructing an overlapping covering {�i}M
i=1 of the domain �. Each �i

in the covering is called a patch. For simplicity, it is assumed that the patches are circles with centers c0
i = (x0

i , y
0
i ) and 

radii Ri . The left image in Fig. 10 displays an example cover of a complexly shaped domain. In general, it is not necessary 
that the patches be circular, as they may be shaped as squares, ellipses, etc. The PUM is applicable in higher dimensions 
as well, for example in 3d the patches could be cubes or spherical in shape. Associated with each center in � is the index 
function

Pi(xc
k) = {

i | xc
k ∈ �i

}
i = 1, . . . , M (15)

which is used to keep track of how many patches that each center is located in.
Associated with the covering is a family of compactly supported, non-negative, continuous functions {wi} which are 

constructed via Shephard’s method [24] as

wi(xk) = Ci(xc
k)∑

j∈Pi(xc
k)

C j(xc
k)

i = 1, . . . , M. (16)

A possible choice for Ci(x) in (16) is a compactly supported Wendland function [26] RBF such as

C(r) = (1 − r)4+(1 + 4r) (17)

where

(1 − r)4+ =
{

(1 − r)4 0 ≤ r < 1
0 r > 1.

(18)

In this case, compact support on each patch is guaranteed if the Wendland functions (17) used to construct the weight 
functions (16) are specified as

Ci(x) = C

(‖x − ci‖2

Ri

)
.

As a result, the weight functions satisfy the partition of unity property∑
i∈Pi(xc

k)

wi(x) = 1.

Additionally, wi(x) = 0 if i /∈ Pi(x). A function f is approximated locally by si on each patch �i . Then due to properties of 
the weight function the local approximants are put together as
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Fig. 4. RRBF partion of unity approximation of D1 = fx + f y (solid line) and D2 = fxx + f yy (dashed line) of the function f (x, y) = exy . Left: convergence 
trend with decreasing fill distance for a fixed number of patches and an increasing number of centers per patch. Right: convergence trend with an increasing 
number of patches with an approximately fixed number of centers per patch.

s(x) =
∑

i∈Pi(x)

si(x)wi(x). (19)

The approximation at each x is a linear combination of the local approximations on each patch containing x with the 
largest weight being placed on patches where x is located near the center of the patch and less weight is placed on patch 
approximations where x is located near the boundary of a patch.

In a typical PUM approximation method such as [17], derivatives are approximated by applying a linear differential 
operator D to (19) as

Ds(x) =
∑

i∈Pi(x)

D [si(x)wi(x)] . (20)

As the order and complexity of D increase, the repeated use of the product rule can quickly result in an unwieldy expres-
sion containing a large number of derivatives to evaluate. Since the calculation of derivatives by the RRBF method already 
involves the quotient rule, a simplified PU method is used to reduce the computational cost of the method. In the simpli-
fied method, values of the weight function (16) still depend on the location of x within a patch, but then are considered 
constants rather than functions of x for approximating derivatives which the modified method calculates as

Ds(x) =
∑

i∈Pi(x)

wiDsi(x). (21)

Derivative values at a point x are simply linear combinations of their values from each patch the point is contained in.
Fig. 4 examines the convergence of the RRBF PU method for approximating D1 = fx + f y and D2 = fxx + f yy of the 

smooth function f (x, y) = exy . The domain is a unit circle and the centers are quasi random Hammersley points [16]. The 
total number of radius 0.3736 circular patches is kept constant at sixteen and an increasing number of centers are added 
resulting in more centers per patch. The convergence can be examined in terms of the fill distance h which (left image 
of Fig. 4) is the radius of the largest possible empty ball that can be placed among the centers in any one patch. The 
convergence can also be examined as the number of patches is increasing (right image of Fig. 4) while the number of 
centers per patch is kept fixed (or approximately fixed as absolutely fixed is difficult with quasi random centers). As the 
patch radius is adjusted the ratio radius/h is kept fixed at approximately 4.5. The convergence results can be compared to 
the convergence results of the RBF PU method in figure 10 of reference [17]. A theoretical analysis of the modified method 
as well as additional numerical results are needed in order for the modified method to be validated.

5. Numerical examples

Fig. 1 compared the results of interpolating a discontinuous function by the standard and rational RBF methods. The 
rational method can also be significantly more accurate in approximating continuous functions that have steep fronts or 
sharp gradients as is illustrated in section 5.1. Section 5.2 examines the solutions of the linear advection equation with a 
discontinuous initial condition, Burgers’ equation with a solution featuring a steep front, and a nonlinear hyperbolic con-
servation law, inviscid Burgers’ equation, with a smooth initial condition that develops a shock as the solution is advanced 
in time. Section 5.3 considers the interpolation of a 2d function with a steep front using scattered quasi random center 
locations. Finally, section 5.4 uses the modified PU method from section 4 to implement the RRBF method for the solution 
of the 2d Burgers’ equation in a complexly shaped domain.
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Fig. 5. Top left: first derivative of function (22) at t = 0.53. Top right: second derivative of function (22) at t = 0.53. Bottom left: first derivative relative 
pointwise errors. Bottom right: second derivative relative pointwise errors.

In all examples, the shape parameter was selected so that the condition number of the system matrix B (6) has a 
O

(
1016

)
condition number. When implemented in double precision, which was used in all examples, a shape parameter 

selected in this way results in the RBF method producing the most accurate approximations. Both the standard and rational 
RBF methods invert the same system matrix and show the same sensitivity to changes in the shape parameter.

5.1. 1d interpolation and differentiation

The function

u(x, t) = 0.1ea + 0.5eb + ec

ea + eb + ec
(22)

where a = −(x + 0.5 + 4.95t)/(20ν), b = −(x + 0.5 + 0.75t)/(4ν) and c = −(x + 0.625)/(2ν) is a solution to Burgers’ equa-
tion (24) that is solved in section 5.2. With small values of ν , the function initially features two smaller steep fronts at 
t = 0. The two fronts merge into a larger steep front as t advances. The function is interpolated, and its first and second 
derivative are approximated at time t = 0.53 after the two small fronts have merged into a larger one by both the stan-
dard and rational RBF method. N = 100 uniformly spaced centers are used. A shape parameter of ε = 4 results in a system 
matrix with a O

(
1016

)
condition number. Both methods factorize the same system matrix B so the conditioning issues 

of the two methods are the same. The standard method has relative maximum errors for interpolation and the first and 
second derivative respectively of 0.0290, 0.6195 and 4.4667 while the rational method errors are considerably smaller at 
1.3762e-04, 9.3574e-04 and 0.0042. The derivatives and pointwise errors are shown in Fig. 5.

5.2. 1d time-dependent PDEs

After the time-dependent PDEs are discretized in space with a RBF method, the resulting semi-discrete system is ad-
vanced in time with an explicit fourth-order Runge–Kutta method with a constant time step size.

The first time-dependent problem is the advection equation

ut + ux = 0 (23)
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Fig. 6. Solution of the advection equation (23) at t = 0.75. Left: SRBF method. Right: RRBF method.

Fig. 7. Pointwise errors for the solution of the Burgers equation (24) at t = 1. Left: standard RBF method. Right: rational RBF method.

on the interval � = [−1, 1]. The initial condition is a discontinuous step function and the boundary condition u(−1, t) = 1
is applied. As time advances the initial condition is propagated to the right with wave speed one. The non-uniformly spaced 
centers used for the problem cluster mildly around the boundaries and their location is given by the formula (14). The 
solution is advanced to time t = 0.75 by both the standard and rational RBF method and the result is illustrated in Fig. 6. 
Both methods use a shape parameter of ε = 6. The standard method solution exhibits spurious Gibbs oscillations whereas 
the rational solution does not.

Burgers’ equation

ut + uux = νuxx (24)

is solved on the interval [−1, 1]. The exact solution to the test problem is given by equation (22). The initial condition, 
u(x, 0), and the boundary conditions u(−1, t) = gl(t) and u(1, t) = gr(t) are specified using the exact solution. The viscosity 
coefficient is taken as ν = 0.002. The N = 200 centers are located according to equation (14) and a shape parameter of 
ε = 8.5 is used. The solution is advanced in time to t = 1 at which time the steep front is approaching the center of the 
domain. Fig. 7 shows the pointwise errors of the standard method in the left image and the rational method in the right 
image. The rational method is approximately two more decimal places accurate near the steep front and approximately five 
decimal places more accurate away from the front.

The next PDE problem is an nonlinear hyperbolic conservation law, inviscid Burgers’ equation

ut +
(

u2

2

)
x
= 0 (25)

on the interval [−1, 1]. The smooth initial condition u(x, 0) = sin(π(x + 1)) develops a discontinuity at time t = 1
π when 

a shock forms. Most high-order numerical methods such as the RBF method or the pseudospectral are unstable for this 
type of problem without some type of artificial viscosity [25] being added. With N = 100 centers located according to 
equation (14) and with shape parameter ε = 6 the standard method solution becomes unstable and blows up shortly after 
the shock forms in the solution. With the same settings, the RRBF method is able to accurately resolve the problem. The 
RRBF solution at time t = 0.75 for the problem is shown in the left image of Fig. 8 and the pointwise error is shown in the 
right image.



140 S.A. Sarra, Y. Bai / Applied Numerical Mathematics 130 (2018) 131–142
Fig. 8. Rational RBF solution of the inviscid Burgers equation (25) at t = 0.75. Left: the numerical versus the exact solution. Right: pointwise error from the 
solution in the left image.

Fig. 9. Interpolation of function (26). Left: standard RBF method has non-physical oscillations near the steep front. Right: the rational RBF method produces 
a smooth solution with no visible oscillations.

5.3. 2d interpolation

This example interpolates a 2d function

f (x, y) = arctan[125(

√
(x − 1.5)2 + (y − 0.25)2 − 0.92)] (26)

with a steep wave front located asymmetrically in the unit square. The function is interpolated on a set of centers consisting 
of N = 5000 quasi random Hammersley points. The interpolant is evaluated on a 3600 point uniformly spaced tensor 
product grid. A shape parameter of ε = 8 is used which results in the RBF system matrix having a O

(
1016

)
condition 

number. The standard method (left image of Fig. 9) has large visible oscillations and a 2.43 max error. The rational method 
(right image of Fig. 9) has no visible oscillations and a max error of 0.16.

5.4. 2d time-dependent PDEs

The rational method takes about 14 times longer to execute than the standard method on the 2d interpolation problem 
in section 5.3. While not a large issue for a one time interpolation, if the approximation is to be repeated a thousand
of times as is the case of derivative approximation in a time-dependent PDE problem in more than one dimension the 
extended execution time may prohibit the rational RBF method from being implemented as a global method. The RRBF 
method can be implemented more efficiently in higher dimensions using the modified PU method described in section 4.

This example uses the modified PU approach to implement the RRBF method for the 2d Burgers’ equation

ut + uux + uu y = ν(uxx + u yy) (27)

on scattered centers in the complexly shaped domain shown in the left image of Fig. 10 along with a PU covering consisting 
of 22 circular patches. A variety of coverings with various degrees of overlapping of patches may produce good results. 
Reference [17] recommends that the overlap of the patches be 20 percent of the distance between the centers of the 
patches. The exact solution of the problem is
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Fig. 10. Left: Centers and partion of unity cover for the solution of the 2d Burgers equation (27). Right: The rational RBF approximation of the solution of 
the 2d Burgers equation (27) at t = 1 with ν = 0.02.

Fig. 11. 2d Burgers equation (27) absolute pointwise error on a log scale. Left: global SRBF method. Right: RRBF partion of unity method.

u(x, y, t) =
(

1 + e
x+y−t+1

2ν

)−1
. (28)

The initial condition and Dirichlet boundary conditions are prescribed according to the exact solution.
The standard global RBF method and the local PU rational RBF method are both used to advance the PDE (27) with 

viscosity coefficient ν = 0.02 to time t = 1. The maximum errors, which occur along the step front, are 0.028 for the 
standard global method and 0.020 for the local rational method. The rational method is significantly more accurate away 
from the steep front. The pointwise errors for each method are shown in Fig. 11. The rational method takes approximately 
11 times longer to execute on this example. However, no attempt has been made yet to optimize the execution time of the 
RRBF PU method. Parts of the RRBF PU method could be implemented in parallel in order to realize shorter execution times.

6. Conclusions

The rational RBF method is capable of more accurately resolving problems featuring steep fronts and discontinuities than 
is the standard RBF method. In the numerical examples, the RRBF method was moderately more accurate in the neighbor-
hood of a steep front or discontinuity and significantly more accurate away from the steep fronts and discontinuities. In one 
numerical example, the RRBF was able to accurately resolve the solution of a nonlinear hyperbolic conservation law without 
any added artificial viscosity.

When using a RBF, such as the IQ that has been used throughout, with a SPD system matrix the RRBF method is 
well-defined. In this case the RRBF method factorizes the system matrix B with a Cholesky factorization and finds the 
minimal eigenvector of a SPD matrix S . In time-dependent PDE problems where derivatives are calculated multiple times 
using the same set of centers and the same shape parameter, the system matrix B only needs to factorized once, B−1 only 
needs to be constructed once, and all derivative evaluation matrices only need to be constructed once in a set up phase of 
the algorithm.



142 S.A. Sarra, Y. Bai / Applied Numerical Mathematics 130 (2018) 131–142
The RRBF works with the same system matrix as does the SRBF method. Both methods are most accurate for values of 
the shape parameter that cause the system matrix to be ill-conditioned. The RRBF method can be regularized by the MDI 
in the same way that the SRBF is regularized in order to alleviate the conditioning problem.

A modified partition of unity approach has been used to more efficiently implement the method in two space di-
mensions. The modified method features a less computationally intensive approach to derivative approximation. While the 
modified PU method performed well on the numerical examples within it is not backed by theoretical support or extensive 
numerical examples. More work needs to be done in order for the modified method to be validated. The more compu-
tationally intensive standard PU derivative approximation approach (20) could be easily used with the rational method 
if a theoretically backed approach with a longer history of successful application is desired. With the partition of unity 
implementation of the rational RBF method, there is an opportunity for parallel implementation which could be used to 
significantly speed up the execution time of the method. An additional refinement that can be made to the RRBF PU ap-
proach is shape parameter selection on individual patches.

The class rbfRational which implements all the methods in this manuscript has recently been added to version 1.1 of 
the Matlab Radial Basis Function Toolkit (MRBFT) [20,18]. The rationalRbf folder in the examples directory of the MRBFT 
distribution contains scripts that carry out several of the examples in this manuscript.
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