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i
Preface

Radial Basis Function (RBF) methods have become the primary tool for inter-
polating multidimensional scattered data. RBF methods also have become impor-
tant tools for solving Partial Differential Equations (PDEs) in complexly shaped
domains.

Classical methods for the numerical solution of PDEs (finite difference, finite
element, finite volume, and pseudospectral methods) are based on polynomial
interpolation. Local polynomial based methods (finite difference, finite element,
and finite volume) are limited by their algebraic convergence rates. Numerical
studies, such as the comparison of the MQ collocation method with the finite
element method in [1306], have been done that illustrate the superior accuracy of
the MQ method when compared to local polynomial methods. Global polynomial
methods, such as spectral methods, have exponential convergence rates but are
limited by being tied to a fixed grid. RBF methods are not tied to a grid and in turn
belong to a category of methods called meshless methods. The large number
of recent books, which include [4, 3, 42, 71, 92, 93, 94, 95, , , , ,
on meshfree methods illustrates the popularity that the methods have recently
enjoyed. The global, non-polynomial, RBF methods may be successfully applied
to achieve exponential accuracy where traditional methods either have difficulties
or fail. An example is in multidimensional problems in non-rectangular domains.
RBF methods succeed in very general settings by composing a univariate function
with the Euclidean norm which turns a multidimensional problem into one that is
virtually one dimensional.

RBF methods are a generalization of the Multiquadric (MQ) RBF method
which utilizes one particular RBF. The MQ RBF method has a rich history of
theoretical development and applications. The subject of this monograph is the
MQ RBF approximation method with a particular emphasis on using the method
to numerically solve partial differential equations. This monograph differs from
other recent books [31, (3, , | on meshless methods in that it focuses only
on the MQ RBF while others have focused on meshless methods in general. It is
hoped that this refined focus will result in a clear and concise exposition of the
area.

Matlab code that illustrates key ideas about the implementation of the MQ
method has been included in the text of the manuscript. The included code, as
well as additional Matlab code used to produce many of the numerical examples,
can be found on the web at http://www.scottsarra.org/math/math.html
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Chapter 1

Development and Overview of
the MQ RBF Method

The Multiquadric (MQ) Radial Basis Function (RBF) interpolation method
was developed in 1968 by lowa State University Geodesist Roland Hardy
who described and named the method in a paper [97] that appeared in 1971.
Hardy’s discovery was motivated by a problem from cartography which he
described as [97]

...given a set of discrete data on a topographic surface, reduce
it to a satisfactory continuous function representing the topic
surface . ..

Hardy’s early attempts at solving the problem involved the use of Trigono-
metric and Algebraic interpolation methods, both of which were found to be
unsatisfactory. This is not surprising as it has been known since the mid
1950’s [162] that interpolation in more than one dimension with basis func-
tions 1; that are independent of data locations is not a well-posed problem.
There are an infinite number of data locations that lead to a problem with
no solution. Hardy bypassed this problem with a new approach in which the
interpolant is constructed from linear combinations of a single basis function
that is radially symmetric about its center, x € R¢, and whose argument,
r = || z||,, is dependent on the node locations. The basis functions used by
Hardy were the quadric surfaces

o(ric) = V2 +1r2 (1.1)

1



2 CHAPTER 1. DEVELOPMENT AND OVERVIEW

where ¢ is a shape parameter that affects the shape of the surface. The
RBF (1.1) is called the multiquadric or MQ RBF. The plot of the MQ in
figure 1.1 reveals the radial symmetry of the basis functions. In reference
[99], Hardy reviews the development of the M(Q RBF method over the time
period 1968 to 1988.

2.3, : |
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Figure 1.1: A MQ RBF (1.1) with shape parameter ¢ = 2 on the unit circle.

Hardy’s MQ interpolation scheme went largely unnoticed until 1979.
Then in, a study [341] done at the Naval Postgraduate School in 1979 and
summarized in [85], Mathematician Richard Franke compared various meth-
ods to solve the scattered data interpolation problem. He concluded that
Hardy’s MQ method was the best. Additionally, he conjectured that the
system matrix of the method was invertible and that the method was well-
posed. Franke’s numerical results indicated that the method deserved atten-
tion and exposed the method to a broader audience. However, a theoretical
underpinning was still absent. Then in 1986, the theory of the MQ method
began to develop when Charles Micchelli, a Mathematician with IBM, proved
that the system matrix for the MQ (as well as for many other RBFs) method
was invertible [166]. Results [156] on the spectral convergence rate of MQ
interpolation followed from Madych and Nelson in 1992. The first use of
the MQ method to solve Differential Equations [117, | was by Physicist
Edward Kansa in 1990. After the M(Q method was first used to solve PDEs,
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the popularity of the method continued to grow rapidly and a large number
of applications of the method appeared.

Recent results ([52], [190], [132], [128]) have shown, what was at first a
somewhat surprising result. As the parameter ¢ goes to infinity, the MQ
interpolation method is equivalent to global polynomial interpolation. Thus,
if the MQ method is implemented on the structured grids that are required
by global polynomial methods, they are equivalent to the polynomial based
pseudospectral methods. In this way, the MQ method can be considered
as a generalization of the pseudospectral methods to unstructured grids and
complex domains.

1.1 An Example

Popular methods for the numerical solution of PDEs include finite differ-
ence, finite volume, and finite elements methods. The methods are based
on local polynomial interpolation and have algebraic convergence rates. For
instance, a local finite difference method with a five point stencil has a fourth-
order algebraic convergence rate. The computational cost of approximating
a derivative with a finite difference method is O (N).

Pseudospectral methods, based on global polynomial interpolation, are
also widely popular due to their spectral convergence rates. In order to
achieve spectral accuracy, global polynomial methods must be implemented
on special collocations sites (or a smooth mapping of the grid). For example,
a popular choice of collocation points (other Gaussian quadrature points may
be used as well) are the Chebyshev-Gauss-Lobatto (CGL) quadrature points

;= —cos(—j), j=0,1,...,.N (1.2)

on the interval [—1, 1]. The CGL points cluster densely around the endpoints
of the interval. In higher dimensions, pseudospectral methods must be imple-
mented on a tensor product grid that is based on the one-dimensional grid.
Being tied to a fixed grid limits the applicability of pseudospectral methods
to problems that have “nicely” shaped domains. The computational cost
of evaluating a pseudospectral derivative is O (N?) using matrix multiplica-
tion or O (Nlog N) using fast transforms. More details on pseudospectral
methods can be found in [100].
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The non-polynomial MQ RBF method is theoretically spectral accurate
(section 2.4) and is completely grid free. A RBF derivative can be evaluated
by a matrix multiplication in O (N?) flops. For large N, a MQ derivative
can be evaluated to within accuracy €, in O (Nlog N |log em|2) flops by fast
multipole methods [10].

Next we give an example in order to illustrate some features of the MQ
RBF methods and demonstrate how it compares to competing methods. The
example approximates the derivative of function

f(!lﬁ') — 6sin(7rac) (13)

on the interval [—1, 1] on grids of size ranging from N = 10 to N = 60 grid
points and in increments of five. On each grid the derivative is approximated
with the Chebyshev pseudospectral method, the MQ RBF method, and a
fourth-order, five point, finite difference (FD) method. The finite difference
method is implemented on a uniform grid as is typical (but not required) for
low order finite difference methods. The Chebyshev pseudospectral (CPS)
method is implemented on the CGL grid (1.2). The MQ RBF method is im-
plemented on a grid that also clusters collocation points around the bound-
aries, but not as densely as the CGL grid. As N is increased, the shape
parameter in the M(Q method is adjusted so the the system matrix has a
condition number in the range 5el5 < k(B) < 5el6 (an explanation for this
is given in later sections).

The accuracy of each method at each N is illustrated in figure 1.2. Key
aspects of this numerical example that are typical of the three methods are:

1. The FD method requires large N in order to be very accurate.

2. The MQ method is more accurate than the CPS method for small N
(N < 25 in this case).

3. With larger N (actually its the smaller minimum distance between
centers that is the cause, section 2.5), the MQ shape parameter must be
adjusted so that the condition number of the associated linear system
remains reasonable. The shape parameter adjustment decreases the
accuracy of the method. If it is adjusted too much, the M(Q method
will have accuracy comparable to a local FD method (as it does in this
example for N = 60.)
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. The CPS method is able to bypass solving ill-conditioned linear systems

and there exist formulas for the elements of the CPS differentiation
matrix as well as fast transforms to evaluate derivatives that avoid
ill-conditioning and allow the CPS method to realize its theoretical
spectral accuracy.

. In problems with domains that are simply shaped (squares, rectangles,

cubes, etc.) and that can accept the serve restriction on the location
of collocation points, pseudospectral methods are usually the method
of choice. However, in applied problems, domains are often not simply
shaped and we may be unable to use structured grids. This is when
RBF methods become the method of choice.

10 10
3
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Figure 1.2: Left: The MQ method (red asterisk) versus Finite Difference
(green x) and Chebyshev Pseudospectral methods (blue dot). Right: The
MQ method computed with 80 digits of precision (cyan circles) has been
added to the left image for comparison.

The MQ method can be thought of as a generalized, non-polynomial

based, pseudospectral method. Theoretically, the MQ method has a spectral
convergence rate and should have an error curve that continues down as the
error plot for the CPS method does. The implementation of the MQ method
in the above example is the most basic implementation possible. It does not
feature any of the techniques discussed in the monograph that can be used
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to improve upon the accuracy in this example. Throughout the monograph,
progress in the development of the MQ method is discussed that has made
the MQ method closer to being a true generalized pseudospectral method
that can realize its theoretical spectral accuracy. In the right image of figure
1.2, the results of the MQ approximation being recomputed with extended
precision (section 4.1) are shown. This time, the shape parameter is held
constant at ¢ = 1 while N is increased and the M(Q method exhibits spectral
convergence. In section 4.2 an algorithm is discussed, for small N (such as
in this example), that can stably evaluate the MQ interpolant at all values
of the shape parameter without using extended precision.

The outline of the remainder of the book is as follows. In chapter 2
the solution of the scattered data interpolation problem is described and
analyzed. The numerical solution of differential equations by the MQ collo-
cation method, which is based on the MQ interpolant, is then discussed in
chapter 3. Next, chapter 4 looks at algorithms and techniques that can be
used to more accurately and efficiently setup and evaluate RBF approxima-
tion methods. Then in chapter 5, shape parameter selection, variations of
the MQ method, as well as connections that the M(Q method has to other
methods, are covered. Finally, in chapter 6, some recent applications of the
MQ collocation method are described.



Chapter 2

Scattered Data Approximation

Common choices of RBFs ¢(r) fall into three main categories: compactly
supported and finitely smooth; global and finitely smooth; global, infinitely
differentiable, containing a free parameter. References [31, (3, | can be
consulted for more information regarding the large number of basis function
that can be used in RBF approximation. The MQ RBF is the focus of this
monograph due to its popularity in applications and its good approximation
properties. The MQ is representative of the class of RBFs that are global,
infinitely differentiable, and that contain a shape parameter. Most results in
this work apply to other members of this class as well.

2.1 Alternate Definition of the MQ

It has become common to redefine the MQ (1.1) by first letting ¢ = 1/e

which results in
o(r,e) =eV14e?r?,
and then ignoring the scaling factor . The redefined MQ is

o(r,e) = V1+e%ra (2.1)

The new definition makes the MQ behave as a function of the shape pa-
rameter, €, as do other infinitely differentiable RBFs containing a shape
parameter. Throughout we use ¢ to represent the shape parameter when
using the MQ defined as (1.1) and € when using the MQ defined as (2.1).
Figure 2.1 plots the MQ with three different values of the shape parameter
and illustrates how the function becomes increasing flat as € approaches zero.

7
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r

Figure 2.1: The MQ plotted with three different shape parameters.

2.2 RBF Interpolation

RBF interpolation methods use linear combinations of translates of one func-
tion ¢(r) of a single real variable. Given a set of centers x§,...,x% in R¢,
the RBF interpolant takes the form

s(x) :Zajqb(Hx—xﬂ}z,e) (2.2)

r=|x|l, =/ 2%+ -+ 25
The coefficients, «, are chosen by enforcing the interpolation condition
s(x;) = f(x:) (2.3)

at a set of nodes that typically coincide with the centers. Enforcing the
interpolation conditions at N centers results in a N x N linear system

Ba=f (2.4)

where

to be solved for the MQ expansion coefficients a. The matrix B with entries

bij = o(||x{ = x§[,),  @“i=1,...,N (2.5)
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is called the tnterpolation matrix or the system matrixz and consists of
the functions serving as the basis of the approximation space. To evaluate
the interpolant at M points x; using (2.29), the M x N evaluation matriz
H is formed with entries

hiy=o(|xi—x§|,), i=1...,Mandj=1,...,N.  (2.6)

Then the interpolant is evaluated at the M points by the matrix multiplica-
tion
fo=Ha. (2.7)

A Matlab function that forms the M(Q) system matrix in two dimension is in
listing 2.1. A Matlab function that forms the MQ evaluation matrix in two
dimension is in listing 2.2. Both matrices are efficiently formed in Matlab
without using for loops.

SYSTEMMATRIX2D

B the N x N MQ RBF system matrix
Input
xc N distinct centers

%
%
3 % Output
%
%
%

8 function B = systemMatrixMQ2d (xc,shape)

[M,N] = size(xc);

if N>M, xc = xc’; end

x = xc(:,1); y = xc(:,2);

o = omnes (1,length(x));

r = sqrt ( (x*o - (x*0)’) .72 + (y*o - (y*0)’)."2 );
B = mq(r,shape); % N x N

Listing 2.1: systemMatrixMQ2d.m

To illustrate the M(Q interpolation method, we use the function

flz,y) = ze[f(9$—2>2—i(99‘2)2] + 3 [ 0r 41~ fh (017
+ %6[5(%-7)2—5(9@/—3)2] - ée[_(gx_@z_(gy—nﬂ (2.8)

that Franke [35] considered in his 1982 test of scattered data approximation
methods in which he concluded that the M(Q RBF method was the best
method among those surveyed. A circular wedge that is a fourth of a circle
of radius v/2 is used as the domain. The left image of figure 2.2 shows the
618 scattered centers used in the problem and the right image of figure 2.2
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EVALUATIONMATRIX2D - for MQ interpolation in 2d

p)
pA
% Output

% H the M x N MQ RBF evaluation matrix

% Input

% xc N distinct centers

% x M points at which to evaluate the RBF interpolant

9 function H = evaluationMatrixMQ2d (xc,x,shape)

size (xc); if n>m, xc = xc’; end
size (x); if n>m, x = x’; end

[m,n]
[m,n]

xx = x(:,1); xy = x(:,2);
xcx = xc(:,1); xcy = xc(:,2);

N = length(xcx); M = length(xx);

r = sqrt ( (xx*ones (1,N) - ones(M,1)*xcx’)."2 + ...
(xy*ones (1,N) - ones(M,1)*xcy’)."2 );

H = mq(r,shape); % M x N

Listing 2.2: evaluationMatrixMQ2d.m

shows 930 uniformly spaced evaluation points. The approximate function is
shown in figure 2.3.

A shape parameter of ¢ = 3 was used which resulted in a system matrix
with a very large condition number (2.12) of k(B) & 10e16. Dealing with the
typically ill-conditioned matrices associated with RBF methods is a major
issue that will be discussed at length in chapter 4. Despite the poorly con-
ditioned system matrix, the approximation has a relatively small maximum
error of 9.23e-6. The combination of poor conditioning, but good accuracy, is
inherent to RBF methods and is explained by the RBF uncertainty principle
in section 2.5. The Matlab program that carries out the example is in code
listing 2.3.

2.3 Invertibility of the Interpolation Matrix

It is obvious from equation (2.4) that the solution of the M(Q) interpolation
problem will exist and be unique if and only if B is invertible. To establish the
invertibility of the MQ interpolation matrix, the definition of a completely
monotone function is needed. A function ¢ is completely monotone on
[0, 00) if

1. ¢ € C[0,00)

2. ¢ e C®(0,00)
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dlmread (’frankeProblemCenters .txt’,’ ’); % centers
dlmread (’frankeProblemEvaluationPoints .txt’,” ’); % evaluation points

=

length(xc(:,1))
length(x(:,1))

=

£
fExact
shape

frankesFunction (xc(:,1) ,xc(:,2));
frankesFunction (x(:,1),x(:,2));
3;

B
kappa
alpha

systemMatrixMQ2d (xc, shape) ;
cond (B)
B\f;

H
fApprox

= evaluationMatrixMQ2d (xc,x,shape);
= H*alpha;

format long

maxError = norm (fApprox - fExact,inf)
format

t = delaunay (x(:,1),x(:,2));
trisurf (t,x(:,1) ,x(:,2),fApprox)
colormap (’ Summer’)

Listing 2.3: interpolationFrankeExample.m

0.8}

0.4}

Figure 2.2: Left: 618 centers for the Franke function (2.8) example consisting
on 118 boundary centers and 500 interior centers. (2.8). Right: evaluation
points for example (2.8).

3. (=) 9®(r) >0 where r >0 and £ =0, 1,...

A simplified version of a theorem of Micchelli [166] gives the invertibility of
the MQ interpolation matrix.

Theorem 1 Let ¢(r) = ¢(\/r) € C[0,00) and ¢¥(r) > 0 for r > 0. Let
Y'(r) be completely monotone and nonconstant on (0,00). Then for any

set of N distinct centers {x§ ;}721; the N x N matriz B with entries b, =
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1.5

0 .
W\‘

/ M »" iy

m \

1.5 1.5

Figure 2.3: MQ approximation of the Franke function (2.8).

gb(H X§ — XZH2) s nvertible.  Such a function is said to be conditionally
positive definite of order one.

For the MQ we have

and
2
P(r) = 9 /_1€+ izr
() = 4(14:—;70)3/2
6
w(?») (7‘) W
S () —15¢8

16(1 + &2r)7/2
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Thus
(=) 49 (r) > 0

and ¢/(r) is completely monotone and the invertibility of the MQ system
matrix B is established.

2.4 Convergence Rates

For sufficiently smooth functions, the MQ RBF method is exponentially
or spectrally accurate. These terms are used to describe a method that
has an error that decays at the rate O (77N ) where 0 < n < 1. This is in
contrast to local methods such as finite difference or finite element methods
that have algebraic convergence rates where the error decays as O (N~™) for
some constant m.

N =100 N =100

5 10 15 20
€

Figure 2.4: Stationary interpolation. N is fixed at N = 100. Left: maximum

error (solid blue) versus the shape parameter. An error bound of the form

(2.11) is plotted in red dashed. Right: the condition number, x(B), versus

the shape parameter.

The convergence of RBF methods can be discussed in terms of two differ-
ent types of approximation - stationary and non-stationary. In stationary
approximation, the number of centers N is fixed and the shape parameter
¢ is refined towards zero. This type of convergence is unique to RBF methods
as a parallel does not exist in polynomial based methods. Non-stationary
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approximation fixes the value of the shape parameter and N is increased,
as would be done in examining the convergence of polynomial based methods.

Scattered data RBF error estimates involve a quantity called the fill
distance,

h = hzqo =supmin || x — xjH2 . (2.9)
x€eN

€Q X5€E

The fill distance indicates how well the set of centers, =, fills out the domain,

Q2. Geometrically, the fill distance is the radius of the largest possible empty
ball that can be placed among the centers in the domain.

For a fixed shape parameter ¢, the MQ interpolant converges to a suffi-

ciently smooth underlying function at a spectral rate as the as the fill distance

decreases (which usually corresponds to an increase in N). That is, the error

behaves as [28, 151]
—K(e)

[ f(x) —s(x)[<e (2.10)
In the estimate (2.10), K () is a constant that depends on the value of the
shape parameter. Estimate (2.10) is useful for non-stationary interpolation,
but it is unsure of how K varies with ¢, which diminishes its utility in quan-
tifying the converge of stationary interpolation.
Another error estimate [157] is

| f(x) = s(x)| < Kn/EY, (2.11)

where 0 < n < 1. The estimate (2.11) is useful for both stationary and
non-stationary interpolation as it shows that spectral convergence results as
either the fill distance or shape parameter go to zero.

The theoretical convergence rates may be difficult to achieve computa-
tionally due to the condition number of the system matrix growing with both
decreasing fill distance and decreasing shape parameter €. As an example
to illustrate stationary and non-stationary convergence, we interpolate the
smooth function (1.3) using equally spaced centers on the interval [—1,1].
The stationary interpolation results (stationarylnterpolation.m) are in

figure 2.4. An error bound of the form (2.11) of (i)l/(eh) is plotted in the
left figure of the image along with the actual error. The error estimate holds
and the expected convergence rate is achieved for ¢ > 4.5. However, be-
low this threshold, the condition number of the system matrix is such that
k(B) > O (10'®) and standard algorithms for solving system (2.4) in 32-bit
double precision floating point arithmetic are unable to deliver the predicted

accuracy. As N increase in the non-stationary interpolation of this problem,
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a similar result (nonStationarylInterpolation.m) is observed in figure 2.5
as k(B) becomes large.

In the stationary interpolation example, the minimum error was achieved
with a shape parameter of ¢ = 4.5. Often this value referred to as the
“optimal” value of the shape parameter, despite the fact that smaller errors
can be realized with smaller values of the shape parameter using extended
precision (4.1) and with algorithms that by bypass solving the linear system
(2.4). In this case, the term optimal is used the mean the value of the shape
parameter that produces the smallest error when solving (2.4) by standard
algorithms using standard precision computer arithmetic.

0 50 100 150 200 250 0 50 100 150 200 250
N N

Figure 2.5: Non-stationary interpolation. The shape parameter is fixed at
e = 5. Left: maximum error (solid blue) versus N. An error bound of the
form (2.11) is plotted in red dashed. Right: the condition number, x(B),
versus V.

When either N or € is held fixed and the other is refined, theoretical
error bounds exist for stationary and non-stationary approximation. How-
ever, both N and ¢ may be allowed to vary and this is the approach that
is most often taken in applications. For example, we again interpolate func-
tion (1.3), but this time let N vary from 10 to 100 and adjust the shape
parameter so that the condition number of the system matrix is in the range
lelb < k(B) < 1el7. The rationale for keeping x(B) in this range is based
on the previous two examples which produced the most accurate results when
the system matrix had such a condition number. The reasoning will be made
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more formal in the next section. We say that the MQ method is critically
conditioned when the system matrix (or the evaluation matrix when solv-
ing steady PDE problems [section 3.1]) has a condition number in a range
where the M(Q method produces accurate results, but the accuracy would
deteriorate if the condition number were to increase any further. The results
are illustrated in figure 2.6. An exponential convergence rate is observed
from N = 10 to N = 40. The minimum error is with N = 40. With larger
N the shape parameter must be increased in order to have a system matrix
with a desirable condition number. Using more centers with a larger shape
parameter is unable to be improved on the accuracy achieved with smaller N
and smaller shape. While the particular N and shape parameter are problem
dependent, this result is typical. Since the centers are uniformly spaced, the
shape parameter increases at a simple linear rate with /V in order to maintain
the desired conditioning. With scattered centers, such a simple relationship
would not exist.

The Matlab code that produces the example is in listing 2.4. Lines 18 to
25 calculate the condition number of the system matrix and then appropri-
ately increase or decrease the shape parameter to lower or raise the condition
number. This approach would be very computationally expensive in a prob-
lem with large N. Instead, the shape could be specified as being proportional
to the minimum separation distance (2.14). If a variable shape parameter
(section 5.2) is used, a formula for €; could depend on the distance from cen-
ter x to its nearest neighbor. All such strategies have the goal of achieving
good accuracy while keeping the conditioning of the problem under control.

2.5 The Uncertainty Principle

A condition number is used to quantify the sensitivity to perturbations of
a linear system, such as (2.4), and to estimate the accuracy of a computed

solution [203]. Using the 2 norm, the matrix condition number is
-1 Omax
(B) = 1 81 | 51, = 2= 21

where o are the singular values of B. A well-conditioned matrix will have a
small condition number x(B) > 1, while and ill-conditioned matrix will have
a large condition number. In general, as the condition number increases by
a factor of 10, it is likely that one less digit of accuracy will be obtained in a
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shape = 5;
M = 298;
x = linspace(-1,1,M)’;
fExact = exp(sin(pi*x));
dc = 0.025;
minK = 1lelb;
maxK = 1el7;
n = 10:5:100;

warning off
for k = 1:length(n);
n(k);

linspace(-1,1,N)’;
exp (sin(pi*xc));

xc
£

K = 1;

while (K<minK | K>maxK)
B = systemMatrixMQ (xc,shape);
K = cond(B);
if K<minkK

shape = shape - dc;

elseif K>maxK
shape = shape + dc;

end

end
H = evaluationMatrixMQ (xc,x,shape);
alpha = B\f;
fApprox = H*alpha;
maxError (k) = norm(fApprox - fExact,inf);

shapeP (k) = shape;
end
semilogy (n,maxError ,’b*-’)
xlabel ’N’, ylabel ’|error|’
figure
plot (n,shapeP);

xlabel ’N’, ylabel ’shape, \epsilon’
warning on

Listing 2.4: hybridInterpolation.m

computed solution. The M(Q system matrix B is symmetric, thus its singular
values are equal to the absolute value of its eigenvalues, A, and the condition
number can be restated as
| Alinax
k(B) B (2.13)
Section 2.6 discusses another condition number that may be a better indicator
of the accuracy that can be obtained from a RBF approximation.

In section 2.4, the interpolation error was quantified in terms of the fill
distance. This seems appropriate for the analysis of convergence rates be-
cause the fill distance measures how well the centers cover the region 2.
However, the fill distance is not a good measure of the conditioning of the
problem. The reason is that a set of centers may have a fairly large fill dis-
tance but the system matrix may be very ill-conditioned if only two of the
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Figure 2.6: Interpolating function (1.3) while varying both N and e. Left:
Maximum error versus N. Right: Shape versus V.

centers are very close, which results in two rows of the system matrix being
nearly identical. Stability is better quantified in terms of the minimum
separation distance

1

quimionf—x

2.14
i#] ( )

il -
The minimum separation distance can be visualized as the radius of the
largest ball that can be placed around each center in = such that none of the
balls overlap.

An estimate of the condition number of the M@ system matrix B can be
made by obtaining upper and lower bounds on its eigenvalues. Gershgorin’s
theorem [165] states that

N
|)\max_bii|§ Z |bij|, i:1,2,...,N

j=1,j#i
and it allows us to bound the maximum eigenvalue in absolute value as

max

For | A|_. | the lower bound

min’

| Al > a2 e@Ma)/ (e02) (2.15)
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in terms of the minimum separation distance holds where d is the space
dimension and M, is a constant depending on the space dimension. Although
the estimate for largest eigenvalue appears bad, the linearly growing upper
bound for |A|_,. is not the cause of the MQ stability problem. It is the
exponentially decaying lower bound for | A\y,| that is to blame. For a fixed set
of centers, the bound decays exponentially as the shape parameter decreases.
Similarly, for a fixed value of the shape parameter, the lower bound decreases
exponentially as the minimum separation distance decreases.

The convergence results require that the fill distance is small (centers
close together) and/or the shape parameter be small in order to obtain good
accuracy. The conditioning results require that in order for the RBF sys-
tem matrix to be well-conditioned that the shape parameter and minimum
separation distance be large (centers far apart). Obviously, both situations
cannot occur at the same time. This observation has been referred to as the
uncertainty principle [139]. In RBF methods we cannot have both good
accuracy and good conditioning at the same time. The uncertainty principle
is apparent in the stationary and non-stationary interpolation examples that
are illustrated in figures 2.4 and 2.5. The smallest errors in both examples oc-
cur when the condition number of the system matrix is approximately 10el8.
In figure 2.7, the above error bounds are illustrated. In both the stationary
and non-stationary examples the maximum eigenvalue grows slowly with e
and N. However, the smallest eigenvalue rapidly deceases as ¢ decreases or
N grows (g= decreases).

2.6 Local versus Global Condition Numbers

A condition number is used to provide bounds on the error in solving a linear
system, Ba = f, caused by the perturbations in the matrix B and the right
vector f. The perturbed system is

(B+ AB)(a+Aa) = f+Af

where « is the exact solution of the unperturbed system. We denote a com-
puted solution by & = a + A« and the residual by r = Af = f — Ba.

The condition number x (2.12), often referred to as the global or ab-
solute condition number, was introduced in section 2.5. Another matrix
condition number associated with the linear system, Ba = f, is the local or
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Figure 2.7: Maximum (upper blue) and minimum (lower red) eigenvalues
of the system matrices form the stationary and non-stationary interpolation
examples of figures 2.4 and 2.5. Left: stationary. Right: non-stationary.

natural condition number
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The number 0,,;, is the smallest singular value of B. Both condition numbers
can be used to bound the relative error of the solution of the linear system
by the relative residual as

[Aall

7]

< condition number X +—-. (2.17)
[l Iwal
The two condition numbers are related by
1 < Kioe(B) < K(B). (2.18)

To calculate the local condition number, the unknown exact solution «
can be estimated by using the singular value decomposition (SVD) of the
matrix B (section 4.3). The SVD of the non-singular matrix B is B =
UXVT. The matrices U and V are orthogonal matrices and ¥ is a diagonal
matrix with the NV singular values as its entries. The columns of U are an
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orthonormal basis for RY, so the right vector f can be expanded in this basis
as

N
f= Zﬁu (2.19)

where the u; are columns of U and the expansion coefficients are 3; = u! f.
Using the SVD, the solution vector v is « = VE~'UT f. The 2 norm of « is

N

2\ 2
lal,=||VSTUTf|, = <Z ﬁ—2> (2.20)

- g
=1

and since U and V' are orthogonal matrices,

N 2
Ifll = (Zﬁf) :
i=1

Thus, K. can be computed by the formula

/{loc(B) _ || f||2 _ V 512 + .. B]2V (221)

] |y Omin a on/(Bifo1)2+ -+ (ﬁN/O'N)2'

The following Matlab code calculates both the local and global condition
number of a matrix B using the SVD:

[U,S,V] = svd(B);

S = diag(8);
globalConditionNumber = max(S)/min(S);
b = U’*f;
localKappa = sqrt(sum(b."2))/(S(N)*sqrt(sum((b./S)."2)));

When the vector f is such that the solution « is parallel to the singular
vector uy, then By = --- = fy = 0. In this case || f||, = | /1] and k& =
01/0N = Kioe. However, this special case rarely if ever occurs in applications
and the local condition number is a better upper bound for the relative errors
of the solution of linear systems than is the global condition number.

It has been observed [107] that in RBF collocation methods for PDEs
that the RBF evaluation and system matrices are often such that k. < k.
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This helps explain the excellent accuracy of the RBF methods at very large
global condition numbers. A similar relationship exists between the global
and local condition number in many other numerical methods for PDEs. The

paper [138] and the references within can be consulted for details.
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Figure 2.8: Local and global condition numbers over a range of shape pa-
rameters for the Poisson problem (4.1) with A =1 and p = 2.

As an example (poissonLocalGlobalKappa.m), the local and global
condition numbers over a range of shape parameters are examined for prob-
lem (4.1). As shown in figure 4.6, the minimum error of about 10e-6 is reached
for this problem with A = 1 and 1 = 2 using a shape parameter of ¢ ~ 2. At
this value of the shape parameter, x(H) = O (10?°) while .. (H) = O (10').

The same disparity between the local and global condition numbers seems
to exist for the RBF system matrix in interpolation problems (frankeProb-
lemLocalGlobalKappa.m). In figure 2.9, the local and global condition
numbers are plotted versus a range of the shape parameter from the inter-
polation of the Franke function (2.8) from section 2.2. The smallest error
is when ¢ ~ 3 and k(B) = O (10'®), but the local condition number has a
significantly smaller value of k,.(B) = O (10'9).

Despite realizing that the local condition number may be a better indi-
cator of the accuracy of a RBF approximation, we continue to focus more on
the global condition throughout. This is largely due to the fact that numeri-
cal software packages, such as Matlab, have a built-in function that efficiently
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Figure 2.9: The interpolation of the Franke function (2.8) from section 2.2.
Left: Accuracy versus shape parameter. Right: local (solid red) and global
condition (dashed blue) number versus the shape parameter.

estimate the condition number in the 1 norm, rather than computing a SVD
to calculate the global or local condition number in the 2 norm.

2.7 Good Data Independent Center Locations

RBF methods allow complete freedom in selecting center locations. When
approximating functions with sharp gradients and rapidly varying features,
adaptive methods (section 5.7) can be used to place more centers in regions
with finer detail and less in areas where the function is smoother. In other
situations, it may be desirable to locate centers in a data dependent way that
does not assume any knowledge of the underlying function. The following
strategy assumes a constant value of the RBF shape parameter and places
centers so that they provide a fairly uniform coverage of a region. The
algorithm is designed to produce sets of centers that have associated RBF
matrices that have close to the lowest possible condition number on the given
domain.

The conditioning and convergence results of the previous sections indicate
that good sets centers are ones with large minimum separation distances
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0.51

Figure 2.10: 500 near-optimal, data independent, centers with uniform
boundary spacing on an annulus.

(2.14) and small fill distances (2.9). This can be accomplished with the
geometric greedy algorithm of [164] which produces well-distributed near-
optimal center sets in this sense. Additionally, the near-optimal center sets
are not function dependent. The center sets are produced by adding a new
center to fill the currently largest hole in the existing center set. In order
to reduce the error in boundary regions, we have found it beneficial to start
with a uniform coverage of the boundary and then add points to the interior
according to the algorithm.

The program in listing 2.5 uses the geometric greedy algorithm to produce
a near-optimal center set for the domain consisting of the region between two
circles, of radius » = 1/6 and r = 1/2. The code has not been optimized
for efficiency. The boundaries are first covered with equally spaced centers,
30 on the inner boundary and 80 on the outer boundary. Then 390 centers
are added according to the algorithm. The added centers are selected from a
larger set of uniformly spaced centers that cover the domain. The resulting
set of centers is shown in figure 2.10.
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1

2 function [Xn,bpi] = nearOptimalCentersAnnulus (NI,NO,N,M,interiorN)

3 % example usage: [Xn,bpi] = nearOptimalCentersAnnulus (30,80,200,200,390) ;

4 % equally space NI centers on interior boundary and NO on the outter

5 Xn = zeros (NI + NO + interiorN ,2);

6 omegalNt = zeros (N*M,2);

7 ti = linspace (0, 2*pi, NI+1)’; ti = ti(1:NI); r = 1/6; % inner boundary
8 Xn(1:length(ti),1) = r.*cos(ti);

9 Xn(1:length(ti),2) = r.*sin(ti);

10 to = linspace (0, 2*pi, NO+1)’; to = to(1:NO); ro = 0.5; 7% outter boundary
11 Xn(length(ti)+1:length(to)+length(ti),1) = ro.xcos(to);

12 Xn(length(ti)+1:length(to)+length(ti) ,2) = ro.*sin(to);

13 nbPts = NI + NO;

14

15 % --- build a set of center candidates ---------------————--—-—————-

16

17 [X,Y] = meshgrid(linspace(-0.5,0.5,N),linspace(-0.5,0.5,M));

xL = reshape(X,N*M,1); yL = reshape(Y,N*M,1);
[th,p] = cart2pol(xL,yL); I = 1;
for i=1:length(th)
t = th(i); r = p(i); ri = 1/6; ro = 0.5;
if (r>ri) & (r<ro) % add centers between boundaries to omegal
if (xL(i)~=0 & yL(i)~=0)
omegalNt (I,:) = [xL(i) yL(i)]; I =1 + 1;
end
end
end
omegaN = omegaNt(1:I-1,:); clear omegalNt

7 coocosocoooo add interiorN centers to Xn ----------------------——-—-
N = size (omegalN ,1); % number of candidate centers
bpi = 1:nbPts; % index of boundary points in the Xn(i,:)
n = nbPts; % number of centers currently in Xn
minDstToXn = zeros(N,1); % x in omegaN \ Xn, distance to its nearest neighbor
for k=1:N
minDst = 100;
for j=1:n
dst = norm (omegaN(k,:)-Xn(j,:),2);
if dst<minDst & dst>eps, minDst = dst; end % omegaN in Xn already check
if dst<eps, minDst = 0; end % to within machine precision
end
minDstToXn (k) = minDst;
end
n=mn+ 1; % add first interior point

[notUsed ,indexAddToXn] = max(minDstToXn); Xn(n,:) = omegaN(indexAddToXn,:);
minDstToXn (indexAddToXn) = 0;

for k = l:interiorN
for k=1:N % update distances for added point
dst = norm (omegaN(k,:)-Xn(n,:) ,2);
if dst<minDstToXn (k) & dst>eps, minDstToXn (k) = dst; end

55 if dst<eps, minDst = 0; end

56 end

57 n=mn+ 1; % add next interior point

58 [notUsed ,indexAddToXn] = max (minDstToXn); Xn(n,:) = omegaN(indexAddToXn,:);
59 minDstToXn (indexAddToXn) = 0;

60 end

Listing 2.5: nearOptimalCentersAnnulus

25
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2.8 Errors in Boundary Regions

When RBF centers cover a domain in a fairly uniform manner, as they do
with the near optimal center algorithm of section 2.7, the largest errors will
typically occur near the boundary. That is of course, unless the function
has complex features or rapid variations located exclusively in the interior of
the domain. An example is in the right image of figure 2.12. The smoothly
varying function (3.11) is interpolated on the unit circle using N = 100
centers that are marked with red x’s in figure 2.11. A shape parameter of
e = 0.2 was used and the system matrix has a condition number of k(B) =
O (10e19). The interpolant was evaluated at M = 290 evaluation sites and
the overall accuracy is very good, as the maximum error is 7.5e-9. However,
as figure 2.12 shows, the largest errors do occur near the boundary.

An obvious approach to reduce errors in boundary regions is to locate
centers more densely in boundary regions than in interior regions. Boundary
clustering is effective, but with a fixed number of N centers, the approach
should be used with caution as too much boundary clustering will reduce
accuracy in interior regions. Additional support for the use of boundary
clustering via potential theory is given in [177].
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Figure 2.11: Centers (blue circles) and data points (red x’s) for the NaK
interpolation example.

Another strategy to reduce errors in boundary regions is to separate the
location of the centers and the data points where the interpolation condition
is enforced. The centers that are nearest to the boundary are moved outside
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x 10

x 10

Figure 2.12: Left: NaK pointswise errors. Right: standard MQ method
interpolation errors.

the domain, but the locations remain data points. Figure 2.11 illustrates this,
with the centers being marked with circles and the data points with x’s. Using
the center and data points in the figure to solve the previous interpolation
problem (notA KnotInterpolationUnitCircle.m), again with ¢ = 0.2,
the system matrix has a condition number of k(B) = O (10e19), as was the
case in the previous example. The maximum error is 3.1e-9 and as can be
seen from the point-wise errors in the left image of figure 2.12, the errors in
the boundary regions are smaller than in the standard implementation. In
reference [70], the above strategy is referred to as a Not-a-Knot (NaK)
approach due to its connection with polynomial splines. The strategy can be
extended to move more centers then just the centers next to the boundary
out of the domain in order to further increase accuracy. Such a scheme is
called as a generalized NaK method. Applications of the generalized NaK
approach to interpolation problems and to Elliptic boundary value problems
can be found in [129].



28 CHAPTER 2. SCATTERED DATA APPROXIMATION

2.9 Approximating Derivatives

By linearity, the RBF expansion (2.29) can be used to approximate the
derivatives of the function f(x) as

0 Y9 .
B X = Zajﬁ—%qb(\} X — X}

Jj=1

e). (2.22)

Higher order derivatives, partial derivatives, and mixed partial derivatives,
are handled in a similar manner. After finding the RBF expansion coeffi-
cients from the interpolation problem, the derivative of the function can be
evaluated via (2.22). The m-file mgDerivatives.m contains formulas for
the first and second derivatives of the MQ).

If (2.22) is evaluated at the centers {Xj}jvzl and written vector-matrix
notation we have

0 0
aZ’iS(X) n 82152

Ho (2.23)

where the evaluation matrix is the N x N matrix %H with entries

0 -
by = g tlXi=xill), =1 N (2:24)

The notation H,, indicates a matrix with such entries. Likewise, H,.., is
used for second derivatives. Higher derivatives and mixed partial derivatives
are denoted using similar notation.

By substituting @ = B~!f into equation (2.23), the differentiation
matrix

0

D HB™! (2.25)

can be defined. The derivative of the function f(x) at the centers {Xj}jvzl

can be approximated by the single matrix multiplication

0 0
8@- - 8xi8<x> N Df

in O (N?) flops. The differentiation matrix is well-defined since it is known
that the system matrix B is invertible.
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For any sufficiently differentiable RBF, ¢[r(x)], the chain rule gives

dp  dg¢ Or
dr;  dr Ox; (2.26)
and , , , )
0°¢ _do o°r d*¢ [ Or
ox?  dr 02? + dr? (83:1) (2.27)
where
or T;
or; r
and

For the MQ in particular,
do e%r

dr — \1+e42

and

d*¢ g2

arz 1 +52r2]3/2’
Higher derivatives and mixed partial derivatives are calculated in a similar
manner.

2.10 The Generalized MQ

A generalized version of the MQ RBF (GMQ) is
P(r; €) = (1 +%r?)? (2.28)

where the exponent S may be any real number except the non-negative inte-
gers. Obviously, with 5 = 1/2, the GMQ reduces to the MQ. With g = —1/2
the GMQ is equal to the inverse multiquadric RBF, and with 8 = —1 is equal
to the inverse quadratic RBF. For § < 0 the generalized MQ is strictly pos-
itive definite and for 0 < 8 < 1 the generalized MQ is conditionally positive
definite of order one. In both cases the system matrix for the interpolation
problem can be shown to be invertible. With g > 1, the generalized MQ
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is conditionally positive definite of order [3] and in order to show that the
system matrix B is invertible it is necessary to append low order polynomials
to the RBF interpolant (2.29). However, in applications it is common to use
the generalized MQ with § > 1 without the appended polynomials and good
results are reported without encountering singular matrices.

Some researchers have reported good results with non-standard values of
the GMQ exponent. Good accuracy with exponents § = 1.03 and g = 1.99
was described in [205] and [211] respectively. However, the utility of using
the GMQ rather than the MQ) is questionable and is easily explained via the
uncertainty principle. The stationary interpolation example of section 2.4 is
repeated (frankeProblemGeneralizedMq.m) with the GMQ exponents
B =-1.5,0.5,1.03,1.99,3.5. As illustrated in the right image of figure 2.13,
the condition number of the system matrix increases with the exponent at
each value of the shape parameter. In the right image of figure 2.13, accuracy
versus the shape parameter is shown and the expected correlation between
good accuracy and poor conditioning is observed. The GMQ with § =
3.5 has a system matrix with the highest condition number over the set of
shape parameters and produces the most accurate approximation over a large
portion of the set of shape parameters. However, all produce roughly the
same accuracy when their system matrices become critically conditioned.
Over the particular discrete set of shape parameters sampled in this example,
the MQ produces the single most accurate approximation. There seems to
be no particular advantage to using 5 # 0.5. The important factor is that
the basis functions be employed at a shape parameter for which their system
matrix is critically conditioned. A more detailed numerical study of the GMQ
was recently conducted in [11].

2.11 Least Squares mode

Instead of enforcing the interpolation conditions (2.3), RBF methods can
be implemented in a least squares (LSQ) mode. In least squares mode the
number of basis functions, M, is less than the number of data locations, N.
Least squares approximation is useful in several situations that include noisy
data and problems with a large number of data locations. For convenience, we
consider the case where the centers, =, are a subset of the /N data locations, Y,
at which f is known. More general LLSQ methods exist in which the location
of the data sites and centers do not coincide.
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€

Figure 2.13: Generalized MQ stationary interpolation: § = —1.5 (cyan di-
amond), the MQ S = 0.5 (blue asterisk), 5 = 1.03 (green x), f = 1.99
(magenta circles), = 3.5 (red squares). Left: Interpolation error versus the
shape parameter. Right: Condition number of the system matrix versus the
shape parameter.

The LSQ mode RBF approximant is

s(x) :Zaqu(”x—xﬂ\z,g). (2.29)

The expansion coefficients are found by solving the over determined linear
system, Ba = f, with the system matrix that has elements

bij = (|| x7 —x5|,), i=1,...,N,j=1,..., M. (2.30)
In Matlab, the linear system can still be solved via the backslash operator
that is used for the interpolation problem. For over determined systems, the
backslash operator solves the system in a least squares sense using a QR
decomposition.

Next, the example from section 2.2, which approximated function (2.8)
using RBF interpolation, is reworked using a least squares approach. From
the original N = 618 centers, 100 (M = 518) of interior centers are only
used as data locations (right image of figure 2.14). The results in the left
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image of figure 2.14 show that the LSQ method is more accurate than the
interpolation method on this problem. Listing 2.6 displays a Matlab script
implements the LSQ MQ method for the problem.
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Figure 2.14: Left: Interpolation error (blue solid) and LSQ error (red dashed)
versus the shape parameter. Right: The points marked with a blue dot are
data locations only and not centers.

Hardy first used a RBF least squares method in his original paper [97]
and he again discussed the least squares approach in the review paper [99].
Since that time, a variety of RBF least square methods have been suggested.
The book [063] and the references within may be consulted for details.

2.12 Chapter Summary

The MQ RBF method is an effective method for scattered data approxima-
tion in complexly shaped domains. Implementing the method is essentially
the same in higher dimensions as it is in one dimension. Theoretically, the
MQ method is spectrally accurate. The spectral accuracy of the method
can be achieved if the centers are not too close together. However, if the
minimum separation distance is too small, conditioning problems may pre-
vent the spectral accuracy from being realized. The meshfree property of the
MQ method allows for complete freedom in choosing the location of centers.
Unless the underlying function is known to have steep gradients or detailed
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localized features (section 5.7), using centers that cover a domain in a fairly

dlmread (’frankeProblemCenters .txt’,’ ’); % N data points
dlmread (’ frankeProblemCentersLsq.txt’,’ ’); % S centers, xs a subset of xc
dlmread (’frankeProblemEvaluationPoints .txt’,’ ’); % M evaluation points

N = length(xc(:,1)); M = length(x(:,1)); S = length(xs(:,1));

f = frankesFunction (xc(:,1) ,xc(:,2));
fExact = frankesFunction (x(:,1),x(:,2));
r = zeros (N,S);
for i=1:N
for j=1:8

r(i,j) = sqrt( ( xc(i,1) - xs(j,1) )~2 + ( xc(i,2) - xs(j,2) )"2 );
end
end

rh = zeros (M,S);
for i=1:M
for j=1:8
rh(i,j) = sqrt( ( x(i,1) - xs(j,1) )~2 + ( x(i,2) - xs(j,2) )"2 );
end
end

shape 2.6;
B mq (r, shape) ; % system matrix
lambda = B\f;

H = mq(rh,shape);
fApprox = H*lambda;

maxError = norm (fApprox - fExact,inf)

Listing 2.6: frankeProlemLsq

33

uniform manner is recommend so that the fill distance (2.9) and minimum
separation distance (2.14) are balanced.
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Chapter 3

Solving PDEs by Asymmetric
MQ Collocation

The asymmetric MQ collocation method is so named due to the fact that
its evaluation matrix is not symmetric. To describe the asymmetric MQ
collocation method for PDEs, we consider a linear steady problem and a
linear time-dependent problem. Let £ be a linear differential operator. The
steady problem is

Lu=f inQ (3.1)
and the time-dependent problem is
2_1; =Lu in Q. (3.2)

Both PDEs have boundary conditions imposed on all or parts of the bound-
ary, 0€2, by a boundary operator, B, so that the PDE is well-posed. Infor-
mation on the correct specification of boundary conditions can be found in
standard introductory text books on PDEs such as reference [59].

Let = be a set of N distinct centers that are divided into two subsets.
One subset contains N; centers, x¢, where the PDE is enforced and the other
subset contains N centers, x%, where boundary conditions are enforced. For
simplicity, it is assumed that the centers are in an array that is ordered as
= = [x§; x5].

The MQ collocation method applies the operator £ to the MQ interpolant
(2.29) as

N
Lu(x) = ;Lo x¢ —x5]|,), i=1,...,Np, (3.3)
j=1

35



36 CHAPTER 3. ASYMMETRIC COLLOCATION

at the N; interior centers and applies an operator B which enforces boundary
conditions as

N
Bu(x) = a;Bo(||x¢ —x¢[,), i=N;+1,..., N (3.4)
j=1

at the Np boundary centers. In matrix notation, the right side of equations
(3.3) and (3.4) can be written as H\, where the evaluation matrix H that
discretizes the PDE consists of the two blocks

H = {gz] (3.5)

The two blocks of H have elements

(Lo)i; = Lo(||xf—x5],), i=1,....,N; j=1,...,N
(B¢)Z] = B(ﬁ(HXf—XgHQ, Z:N[+1,,N jzl,,N

From the interpolation problem in section 2.2, we have that o« = B~'u where
B is the system matrix with elements given by equation (2.5). The matrix
that discretizes the PDE in space is the differentiation matriz

D=HB™! (3.6)

which was defined for a single derivative in section 2.9. The differentiation
matrix may discretize a single space derivative or an entire differential oper-
ator.

The steady problem (3.1) is discretized as

Du=f (3.7)

and has solution
w=D"'f=BH'f. (3.8)

The evaluation matrix H cannot be shown to always be invertible. In fact,
examples have been constructed in which the evaluation matrix is singu-
lar [108]. Depending on the differential operator £, the functions used to
form the matrix H may not even be radial. Despite the lack of a firm the-
oretical underpinning, extensive computational evidence indicates that the
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matrix H is very rarely singular and the asymmetric method has become
well-established for steady problems.
The time-dependent problem (3.2) is discretized in space as

d
d—? = Lu ~ Du. (3.9)

Equation (3.2) is a system of ordinary differential equations (ODES) that
is advanced in time with a numerical ODE method. Such a strategy is
commonly referred to as a method of lines approach. Since B is invertible
(2.3), the matrix D can always be formed and the MQ collocation method
is well-posed for time-dependent PDEs.

3.1 Steady Problems

-1.5 -1 -0.5 0 0.5 1 1.5
Figure 3.1: 60 centers on the unit circle consisting of 22 evenly space centers
on the boundary and 38 near optional interior centers.

As a numerical example we consider the two-dimensional Poisson problem
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clear, home, close all

Nb = 22; % number of boundary points

Np = 60; % total number of center, interior and boundary

centers = dlmread(’centersUnitCircle60 .txt’,’ ’);

x = centers(:,1); y = centers(:,2);

u = 65./(65 + (x - 0.2).72 + (y + 0.1)." 2); % exact solution

f = 130./(65 + (x-0.2) .72 + (y+0.1) ."72) .73.%(2.%x-0.4) .72 - ...
260./(65 + (x-0.2) .72 + (y+0.1) .72) .72 + ...
130./(65 + (x-0.2) .72 + (y+0.1) .72) .73.%(2.xy+0.2) .~ 2;

H = zeros (Np,Np); rx = zeros(Np,Np); ry = zeros(Np,Np); r = zeros (Np,Np);

f(1:Nb) = u(1l:Nb); % Dirichlet Boundary conditions
for i=1:Np
for j=1:Np
rx(i,j) = x(i) - x(j);
ry(i,j) = y(i) - y(§);
r(i,j) = sqrt( rx(i,j)"2 + ry(i,j)-2 );
end
end
index = 1;

for shape=1.0:-0.01:0.1;

H(1:Nb,:) = mq(r(1:Nb,:),shape); % enforce boudary conditions

Hxx = mqDerivatives (r(Nb+1:Np,:),rx(Nb+1:Np,:),shape,2); 7’ enforce PDE
Hyy = mqDerivatives (r(Nb+1:Np,:),ry(Nb+1:Np,:),shape,2);

H(Nb+1:Np,:) = Hxx + Hyy; % evaluation matrix

kappa (index) = cond (H);
warning off
lambda = H\f; % expansion coefficients via Gaussian elimination

warning on

B
uh

mq (r, shape) ; % system matrix
Bxlambda; % approximate solution

er (index) = norm(u-uh,inf);
sh(index) = shape;
index = index + 1;
end

semilogy (sh,er,’b’), xlabel ’shape parameter’, ylabel ’max error’
figure, semilogy(sh,kappa), xlabel ’shape parameter’, ylabel ’\kappa (H)’

Listing 3.1: poissonExampleMQ.m

on a unit circle domain, €2. The function f in equation (3.10) is specified so
that the exact solution is

65

U Y) = G T =02 £ T 00 (3:.11)

Dirichlet boundary conditions are prescribed on the boundary, 02, of the
unit circle using the exact solution. Figure 3.1 shows the N = 60 center
locations used in the example. The centers locations were determined by the
near optimal algorithm of section 2.7. In the left image of figure 3.2 the error
over a range of shape parameter is shown. For this example, the “optimal”
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Figure 3.2: Left: Maximum error versus the shape parameter for problem
(3.10). Right: Condition number of the system matrix from equation (3.10)
versus the shape parameter.

value of the shape parameter is about ¢ = 0.22 at which the smallest error
is reached. Matlab code that implements the example is in figure 3.1.

The implementation in listing 3.1 is a basic, straight forward implementa-
tion. Modifications can be made to the basic implementation for the purposes
of improving accuracy, conditioning, and efficiency. Some of the possibili-
ties include the following. The Contour-Padé algorithm (reference [129] and
section 4.2) that can accurately evaluated the RBF approximant for small
shape parameters by bypassing the ill-conditioned linear system if N is suf-
ficiently small. Reference [12/] suggests several strategies for mitigating the
ill-conditioning problem for the MQ asymmetric collocation method for el-
liptic PDEs. The strategies include: domain decomposition (section 4.6),
variable shape parameters (section 5.2), a truncated MQ basis, a multi-zone
method, preconditioning (4.5.1), and adaptive center distributions. In refer-
ence [185] and section 5.8, integrated MQ RBF's are used to solve equation
(3.10). Reference [53] and section 5.7 discusses the adaptive center location
method of residual sub-sampling to solve boundary value problems. A greedy
algorithm to select center locations is in section 4.7. A finite difference mode
MQ method has been used to solve elliptic PDEs in reference [199] and sec-
tion 5.6. Since errors are usually largest near boundaries, the authors in
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reference [09] purpose a method that collocates both the boundary condition
and the PDE at the boundary points. In line 37 of listing 3.1, the RBF ex-
pansion coefficients are solved for using Matlab’s built-in version of Gaussian
Elimination with scaled partial pivoting. Several algorithms have been sug-
gested that may be a more robust way to solve the linear systems involved
in the MQ method. The algorithms include, the truncated SVD solver (sec-
tion 4.3.1), the improved truncated SVD solver (section 4.3.2), and an affine
space method (section 4.4).

3.1.1 Neumann Boundary Conditions

In addition to Dirichlet boundary conditions the MQ collocation method
easily handles, by modifying the boundary operator B, Neumann (derivative)
type boundary conditions as well as mixed types. As an example, we consider
the Poisson problem (3.10) on the unit square. The domain is discretized
with N = 900 uniformly spaced centers. The function f is set to f(z,y) =
—2(2y® — 3y* + 1) + 6(1 — 2*)(2y — 1) and Dirichlet boundary conditions
of u(0,y) = 2y* — 3y?> + 1 and u(1,y) = 0 are applied as well as Neumann
boundary conditions of

@:0, along y=0andy=1.

Ay

A shape parameter of ¢ = 2.5 results in an evaluation matrix to be inverted
that has a very high condition number x(H) & 4.6e19. Despite the large
condition number, the maximum error of the approximation is 5.1e-5. The
Matlab code in listing 3.2 carries out the example. As is the case with most
computer code for implementing RBF methods, the program is relatively
simple once the indices of the boundary and interior centers are identified.
In this example the boundary centers are not located first in the array of
centers as they were in the previous example. The indices of the centers
where the Dirichlet and Neumann boundary conditions are to be applied
and the indices of the interior centers where the PDE is applied are located
using the Matlab function find on lines 13 through 15 of the listing.

3.1.2 Nonlinear Boundary Value Problems

The MQ collocation method is well-established for the solution of linear
boundary value problems and hundreds of applications to this type of prob-
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shape = 2.5;

N = 30;

Np = N72;
[X,Y] = meshgrid(linspace(0,1,N),linspace(0,1,N));

x = reshape (X,N"2,1);

y = reshape(Y,N"2,1);
f = -2%(2%y."3 - 3*y."2 + 1 ) + 6x(1 - x.72) .%(2%xy - 1);
u = (1 - x.72) .x(2%y."3 - 3xy."2 + 1 ); % exact solution
H = zeros (Np,Np); rx = zeros(Np,Np); ry = zeros(Np,Np); r = zeros (Np,Np);
dirichletBCs = find( x==0 | x==1 ); % identify boundary and interior centers

neumannBCs = find ( (y==0 | y==1) & ~(x==0 | x==1) );
interior = find( x7=0 & x"=1 & y~=0 & y~=1 );

f(dirichletBCs) u(dirichletBCs);

f (neumannBCs) O3
for i=1:Np
for j=1:Np
rx(i,j) = x(i) - x(j);
ry(i,j) = y(i) - y(j);
r(i,j) = sqrt( rx(i,j)"2 + ry(i,j) 2 );
end
end
H(dirichletBCs,:) mq(r(dirichletBCs,:),shape); % evaluation matrix

H(neumannBCs ,:) mgDerivatives (r (neumannBCs ,:) ,ry(neumannBCs ,:) ,shape,1);

Hxx mqDerivatives (r(interior ,:) ,rx(interior ,:),shape,2);
Hyy mqDerivatives (r(interior ,:) ,ry(interior ,:),shape,2);
H(interior ,:) Hxx + Hyy;
kappa = cond (H)
alpha = H\f;
B = mq(r,shape); % system matrix
uh = B*alpha;
error = norm(uh-u,inf)

t = delaunay(x,y); trisurf(t,x,y,abs(uh-u))
xlabel ’x’, ylabel ’y~’ colormap (’ Summer’)

Listing 3.2: poissonNeumannM@Q.m

lem exist. Fewer examples of using the M(Q method to solve nonlinear bound-
ary values problems are available. Nevertheless, the MQ method is well
suited for this type of problem as well. Applying the MQ method to non-
linear boundary value problems results in a nonlinear algebraic system to be
solved. Several approaches have been successful in solving the nonlinear al-
gebraic system. In [68] the authors used available software packages to solve
the nonlinear algebraic systems. More often, some type of iterative method is
used. In [21], a simple method which lagged the nonlinear term and then it-
erated was used. An Operator-Newton iterative algorithm that uses the MQ
was developed in [64] and [00]. Further applications of the Operator-Newton
method can be found in [19].

As an example, we consider the 1d nonlinear boundary value problem

Upy + ULy — U = f (3.12)
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on the interval [0,1]. The vector f is specified so that u(z) = z%e” is the
exact solution. Dirichlet boundary conditions of u(0) = 0 and u(1) = e are
applied. To linearize the equation the nonlinear term is lagged. That is,
letting superscripts represent iteration numbers, we iterate

ulmtY oMyt gy (D) — f, n=0,...,until satisfied. ~ (3.13)

At each iteration, a linear boundary value problem is solved by the MQ col-
location method. The iteration can be stopped when the difference between
successive iterations is below a specified tolerance. To start the method, we
have taken u(®) to be the linear function that is fit between the the boundary
points (0,1) and (1,¢).

The problem is discretized with N = 40 evenly spaced centers. A shape
parameter of ¢ = 3 is used and a tolerance of tol = 10e-8 is specified. The
method converges in 15 iterations and the maximum error is 2.0489e-6. The
numerical solution and point-wise errors are shown in figure 3.3. The Matlab
code for the example is in listing 3.3.

3 107

107°}
— S 7

Z__? E 10
107°
-9
-05 ' ' ' ' 10 ' ' ' '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
X X

Figure 3.3: Solution of equation (3.12). Left: numerical solution. Right:
point-wise errors.
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40;

xc = linspace(0,1,N)’;
o = ones(1,N); rh = xc*o - (xc*0)’; r = abs(rh); % distance matrix
shape = 3;

f = 2xexp(xc) + 4*xc.*exp(xc) + (xc."2).*exp(xc).*(2xxc.*exp(xc) ...
+ (xc.72) .xexp(xc));
ex = (xc."2) .xexp(xc); % exact solution
U = alpha + (beta - alpha)*xc; % initial quess - linear fit between BCs

alpha = 0; beta = exp(1); maxiter = 200; tol = 10e-8; iter = 0; du = 1;

plot (xc,U), pause

£f(1) = alpha; £f(N) = beta; % Dirichlet bc at x=0 and x=1
B = systemMatrix (xc,shape);
H = zeros (N,N);
H(1,:) = mq(r(1,:),shape);

H(2:N-1,:

mqDerivatives (r(2:N-1,:),rh(2:N-1,:) ,shape,2) + ...

diag (U(2:N-1))#*mqgDerivatives (r(2:N-1,:) ,rh(2:N-1,:) ,shape,1) - ...
B(2:N-1,:);

H(N,:) = mq(r(N,:),shape);

while ( norm(du,inf)> tol )

lambda = H\f;
u = Bxlambda;
du = norm (U-u,inf);
U = u;
H(2:N-1,:) = mqgDerivatives (r(2:N-1,:),rh(2:N-1,:) ,shape,2) + ...
diag (U(2:N-1))*mqgDerivatives (r(2:N-1,:),rh(2:N-1,:) ,shape,1)
- B(2:N-1,:);
iter = iter+1;
if iter==maxiter , disp(’exceeded maximum iterations’), break; end

% plot(xc,u,’b’,xc,ex,’r’), pause J uncomment to animate

end
plot (xc,u,’b’,xc,ex,’r--’)

Listing 3.3: nonlinearBvpld.m

3.2 Time-Dependent PDEs

3.2.1 Method of Lines

After time-dependent PDEs are discretized in space with the M(Q method,
the remaining system of ODEs (3.2) is advanced in time with an ODE method
using a method of lines approach.

A popular method in applications is the explicit, four-stage, fourth-order,

Runge-Kutta (RK4) method

ky = ALF (u”, ")
ks = ALF (u™ 4 0.5ky, t" + 0.5A¢) (3.14)
k’4 = AtF(u" + k’g, "+ At)

u"+1 =u" 4+ é (k‘l + 2]{32 + 2]{53 + ]{34) .
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Implicit methods such as the second-order accurate Trapezoid Rule

u"tt ="+ % [F(u") + F(u")] (3.15)
may be used as well. The trapezoid rule was used in the first application
of the MQ method to time-dependent PDEs in reference [118]. Using the
trapezoid rule as a MOL integrator for time-dependent PDEs is sometimes
referred to as a Crank-Nicolson approach.

Other numerical ODE methods that can be used to advance the system
of ODEs in time can be found in standard references on numerical methods
for ODEs such as reference [31].

3.2.2 Eigenvalue Stability

A rule of thumb is that the method of lines is stable if the eigenvalues of
the discretized space operator, scaled by the time step At, lie in the stabil-
ity region of the numerical ODE method. The stability region of the RK4
method (3.14) is shown in figure 3.9. The stability region of the Trapezoid
rule (3.15) consists of the entire left half-plane of the complex plane and
contains numbers with negative real parts.

In some instances, the MQ differentiation matrix may have eigenvalues
with some, possibly large, positive real parts that prevent stable time inte-
gration. This is particulary the case in hyperbolic problems or advection-
diffusion problems in which the advection term dominates. The phenom-
ena is not well understood and has only recently started to be investigated
[177, |. It is speculated that the eigenvalues with positive real parts are
related to the application of boundary conditions. Experiments indicate that
for a given N, the shape parameter € can be chosen large enough so that all
eigenvalues will lie in the left half-plane. However this requirement is rather
restrictive, particulary for large values of N. In most cases € has to be cho-
sen so large that spectral convergence is compromised and in some cases
the accuracy of the RBF methods are reduced to that of local finite differ-
ence methods. In [187] numerical experiments were performed on a group of
time-dependent problems and bounds on the condition number of the system
matrix were found that were necessary to form a differentiation matrix with
eigenvalues with non-positive real parts. In reference [177], numerical exper-
iments indicated that it may be better to base methods for time-dependent
problems on the idea of least squares (section 2.11) rather than interpolation.
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Nonlinear problems can be analyzed by linearizing the problem or a frozen
coefficient approach. Reference [191] provides a more thorough analysis of the
method of lines and RBF methods for nonlinear problems. The conclusion
in [191] is that the method of lines approach leads to solvable ODE systems
and small errors provided that the spatial discretization is fine enough and
if the basis functions used in the spacial discretization are smooth enough.

3.2.3 Linear Advection-Diffusion Equations

function advectionDiffusionMQ ()

dt

a
shape
x

0.005; finalTime = 0.5;

ig nu = 0.002; % advection and diffusion coefficients
6; N = 51; % total collocation points

linspace (0,1,N)’;

o = ones (1,length(x));
rx = x*o - (x*0)’; 7 signed distance matrix
r = abs(rx); % distance matrix

H
H(1,:)
H(2:N-1,:)

zeros (N,N) ; % evaluation matrix

mq(r(1,:),shape); % Dirichlet BC at x=0
nu.*mgDerivatives (r(2:N-1,:),rx(2:N-1,:) ,shape,2) - ...
a.*mqDerivatives (r(2:N-1,:) ,rx(2:N-1,:) ,shape,1);

H(N,:) = mq(r(N,:),shape); % Dirichlet BC at x=1

B = mq(r,shape); % system matrix
dm = H/B; % discretization D, of linear operator L

U = exactSolution(x,0); t=0; % initial condition
while t < finalTime
u rk4 (U,t,dt,QF);
t t + dt;
u(1) 1;
u(N) exactSolution (1,t);
)
end 7 while

exact = exactSolution (x,finalTime);
subplot (1,2,1), plot(x,exact,’r’,x,u,’b’)
subplot (1,2,2), plot (x,abs(U-exact))

function fp = F(u,t)
u(l) = 1; u(N) = exactSolution(1,t); fp = dm*u;
end

function ex = exactSolution(x,t)
if t<dt
if length(x)>1
ex(1)=1; ex(2:1length(x))=0; ex = ex(:);
else, ex = 0; end
else
ce
ex

2.0xsqrt (nu*t); wl = (x-a*t)/ce; w2 = (x+axt)/ce;
0.5%(erfc (wl) + exp(axx/nu).*erfc(w2));

Listing 3.4: advectionDiffusionMQ.m
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The one-dimensional linear advection-diffusion equation is

ou ou 0%u

As an example, the problem is approximated on a domain of {2 = [0, 1] with
an initial condition of u(z,0) = 0. For ¢t > 0, a constant Dirichlet boundary
condition of u(0,¢) = 1 is applied and time-dependent Dirichlet boundary
condition at x = 1 is applied using the exact solution

u(z,t) = % {erfc (;C\/_V_i) +exp (%) erfc (;C\;ry_i)] . (3.17)

Next, the problem is used to illustrate several options to advance the system
(3.2) of ODEs in time.

Explicit Time Integration

In the example, N = 51 uniformly spaced centers were used with a shape
parameter of ¢ = 6. The RK4 method with At = 0.005 was used to ad-
vance the problem to time ¢t = 0.5. The maximum point-wise error at time
t = 0.5 is 4.7e-4. The results from the example are shown in figure 3.4.
The example is similar to the problem in reference [118] which was used to
introduce the MQ collocation method for time-dependent PDEs and used to
demonstrate the superiority of the MQ scheme over finite difference methods.
Additionally, the M(Q scheme was shown to be effective at large cell Reynolds
numbers Re.o] = (aAz)/v. The Matlab source code in listing 3.4 carries
out the example. In this linear example, the entire differential operator can

be discretized as £ ~ a3 + 3.

Implicit Time Integration

In this section we repeat the numerical experiment of the previous section
that used RK4, but now the implicit Trapezoid rule is used for time integra-
tion. Discretizing equation (3.16) in space and then using the Trapezoid rule
to approximate the time derivative results in

At
Ba"' = Ba,, + 5 [Ha"t' + Ha"] (3.18)
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Figure 3.4: Left: MQ solution vs. exact solution of equation (3.16) at time
t = 0.5 with Az = 0.02, a = 1, v = 0.002, and cell Reynolds number
Reiepp = 10. Right: Point-wise error from left image.

where H = vH,, — aH, and the notation o™ denotes the MQ expansion
coefficients at time level ¢". Equation (3.18) is easily manipulated into the

form
(B - %H) "t = (B + %H) a”. (3.19)
Now let
T, = (B - ﬁﬂ)
2
and
b= (53

If we assume that Ty is non-singular and let T = T} 'Tg, then the MQ
expansion coefficients of the PDE solution at the time level t"*! are given by

o™t =Ta".

Recalling that o® = B~'u", the approximate PDE solution at t"*! level is
given by

un—i—l — Ban-‘,—l
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= BT B "
or by letting Ay = BT, ' Tr B7%,
u" = Apu™. (3.20)

Note that in the code in listing 3.5, that the two matrix inverses in the
formula for Ay are never explicitly formed. After a more expensive set up
procedure, the MQ-Trapezoid method needs less than one-fourth of the flops
(floating point operations) to advance the solution one time step than does
the MQ-RK4 method.

The Matlab code in listing 3.5 repeats the numerical example of the previ-
ous section, except that the trapezoid rule is used for time integration rather
than RK4. The results from the example are shown in figure 3.5. We use
N = 51 uniformly spaced centers and shape parameter of e = 6. A time step
of size At = 0.002 was used to advance the problem to time ¢ = 0.5. The
maximum point-wise error at time ¢t = 0.5 is 7.7e-3.

x 10~

0 0.2 0.4 0.6 0.8 1
X

Figure 3.5: Point-wise error from the MQ-Trapezoid solution of equation
(3.16) at time ¢t = 0.5 with Az = 0.02, a = 1, v = 0.002, and At = 0.002.
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=

function = advectionDiffusionMqTrapezoid ()

0.002; finalTime = 0.5;

a = 1; % advection coefficient
nu = 0.002; % diffusion coefficient
shape = 7; N = 51;
x = linspace(0,1,N)’; o = ones(1,length(x));
rx = x*o0 - (x*0)’; r = abs(rx);
U = exactSolution (x,0);
H = nu.*mqDerivatives (r,rx,shape,2) - a.*mgDerivatives (r,rx,shape,1);
B = mq(r,shape);
TL = B - 0.5%dtx*H;
TR = B + 0.5%xdtx*H;
T = TL\TR;
A = B*(T/B);
A(1,:) = 0; A(end,:) = 0;
A(C1,1) = 1; A(N,N) = 1;
t=0;
while t < finalTime
u = AxU;
u(N) = exactSolution(1,t);
t =t + dt;
U = u;
end
exact = exactSolution (x,finalTime);
subplot(1,2,1), plot(x,exact,’r--’,x,u,’b’)
subplot (1,2,2), plot (x,abs(U-exact))
function ex = exactSolution (x,t)
if t<dt
if length(x)>1
ex(1)=1; ex(2:1length(x))=0; ex = ex(:);
else, ex = 0; end
else
ce = 2.0*sqrt (nu*t); wl = (x-a*t)/ce; w2 = (x+axt)/ce;
ex = 0.5%x(erfc(wl) + exp(axx/nu).*xerfc(w2));
end
end
end

Listing 3.5: advectionDiffusionMqTrapezoid.m

Laplace Transform Time Integration

In addition to the method of lines approach, the Laplace Transform MQ
(LTMQ) method has been suggested [1(7] as a very accurate method to
advance linear PDEs in time. If the final time is large, and the PDE is
linear or linearized, then it is possible to advance the PDE in time with
less computational time than required by the MOL approach by means of
the Laplace transform and inverse Laplace transform method. The Laplace
transform is exact, thus the time integration scheme does not have truncation
errors. However, the Laplace transform is not exactly evaluated and there
will be some numerical error depending on the method used to invert the
transform. The LTMQ method only computes the solution at the final time
level and does not compute the solution at intermediate time levels as in
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a time marching approach as the Method of Lines. Reference [167] can be
consulted for the details of the method.

3.2.4 Nonlinear Equations

function vBurgersMQ ()

nu = 5%x0.000875; dt = 0.001; finalTime = 1.2;
N = 140; shape = 11;
x = linspace(-1,1,N)’;
o = ones (1,length(x));
rx = x*o - (x*o0)’; 7 signed distance matrix
r = abs(rx); % distance matrix
Hx = mqDerivatives (r,rx,shape,1);
Hxx = mqDerivatives (r,rx,shape,2);
B = mq(r,shape);
dm = Hx/B;
dm2 = Hxx/B;
U = exactSol(x,0); t=0;
while t < finalTime
u = rk4(U,t,dt,QF);
t =t + dt;
u(l) = exactSol(-1,t); u(N) = exactSol(l,t); U = u;
end 7 while
exact = exactSol(x,finalTime);
subplot (1,2,1), plot(x,exact,’r’,x,u,’b’)
subplot (1,2,2), plot (x,abs (U-exact))
) semmsmmms=== PEEEEE TINEELENE Seosssssssssssscsssssessessesses =
function ex = exactSol(x,t)
x2 = x+1.0; aa = 0.05%(x2 - 0.5 + 4.95%t)/nu;
bb = 0.25*%(x2 - 0.5 + 0.75%t)/nu; cc = 0.5%(x2-0.375) /nu;
ex = (0.1xexp(-aa)+0.5%exp(-bb)+exp(-cc))./(exp(-aa)+exp(-bb)+exp(-cc));
end
function fp = F(u,t)
u(l) = exactSol(-1,t); u(end) = exactSol(li,t);
fp = -0.5*%dm*u."2 + nu*xdm2x*u;
end
D e e e T e
end

Listing 3.6: vBurgersM@Q.m

Nonlinear time-dependent problems often require a slightly different ap-
proach than linear problems. Linear problems allow the entire differential
operator to be discretized as a single matrix D and the entire space dis-
cretization can be evaluated by a single matrix multiplication. For all but
the simplest nonlinear problems, this is not the case. For example, to evalu-
ate the spatial discretization of Burgers equation

ou 0 [u? 9%y

N + m\ )= l/w, (3.21)
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both the first and second order differentiation matrices must be formed. Then
the space discretization is —%Dluz + vDyu.

Listing 3.6 contains Matlab code that solves equation (3.21) on the inter-
val [—1, 1] with the initial condition and boundary conditions u(—1,t) = g;(t)
and u(1,t) = g.(t) being taken from the exact solution. The exact solution
is

0.1 +0.5¢” + e
T eadebfec

where a = —(2+0.54+4.95t)/(2v), b = —(2+0.5)/(4v), and ¢ = —(x+0.625+
0.75t)/(2v). The solution features two sharp fronts advancing left to right
through the domain. The two fronts merge together with advancing time.
With v = 0.004375, the example is discretized in space with the M(Q method
using N = 140 equally spaced centers and a shape parameter of ¢ = 11.
The method is advanced in time with RK4 to time t = 1.2. The results
are displayed in figure 3.6. In section 5.7, adaptive center MQ methods are

u(z, t) (3.22)
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Figure 3.6: Left: MQ solution versus exact of equation (3.21) at time ¢ = 1.2
with N = 140, v = 0.004375. Right: Point-wise error from left image.

used to solve the example with a smaller viscosity coefficient, and with fewer
centers.

Another nonlinear example is the Cubic Schrodinger Equation initial
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value problem )

z‘%+%+8|u|2u=0 (3.23)
with the initial condition u(z,0) = sech(z). The problem is defined on the
real line, but numerically the domain is truncated to a finite interval, 2 =
[—10, 10], that is large enough so that the exponentially decaying solution
does not reach the boundary. The problem has an exact breather solution

u(x,t) = a+ bi where
cosh(z) [4 cos(t) cosh®(x) + 3 cos(t) cos(8t) — 3 cos(t) — 3sin(t) sin(8t)]
a =
4 cosh*(x) — 3 + 3 cos?(4t)

and

cosh(z) [3 cos(t) sin(8t) + 4 sin(t) cosh?(x) + 3sin(t) cos(8t) — 3sin(t)]
4cosh(z) — 3 + 3 cos?(4t) '

A breather is a localized periodic solution with a soliton structure. A soli-
ton is defined to have three properties: they are of permanent form, they
are localized within a region, and they can interact with other solitons and
emerge from the collision unchanged except for a phase shift. There are two
types of breathers: standing or traveling. Standing breathers correspond to
localized solutions whose amplitude vary in time. In this problem the solu-
tion is a standing breather. The problem is discretized in space with the MQ
method with a relatively small number of N = 300 evenly spaced centers on
the large interval. A shape parameter of ¢ = 2 is used which results in a
system matrix with x(B) = 2.0el4. The problem is advanced in time with
the fourth-order Runge-Kutta method (3.14) to time ¢t = 20. The m-file in
listing 3.7 carries out the example and animates the solution as it advances
in time. The numerical solution and point-wise errors for the example are in
figure 3.7.

3.2.5 Higher Dimensions

One of the most favorable feature of the MQ RBF method is that implement-
ing the method in higher dimensions is nearly as simple as implementing the
method in one dimension. To illustrate, a two-dimensional problem is solved
in a complexly shaped domain. The two-dimensional heat equation is

ou  0*u  *u
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Figure 3.7: Left: Cubic Schrodinger equation (3.23) solution at time t = 20.
Right: Point-wise error from left image.

The domain and center locations are shown in figure 3.8. In polar coordi-
nates, the outer boundary is

r(0) = 1+ 2 cos(0) + —- sin(46)

5 20
and the inner boundary is
3 1 . 3 .
r(f) = 10 + 10 sin(6) + 20 sin(56).

The center locations were produced by the near-optimal algorithm of section
2.7. The initial condition and time-dependent Dirichlet boundary conditions
are specified using the exact solution

—5tm

w(z,y,t) = e sin (rx) sin (27y).

A shape parameter of € = 2 is used which results in the condition number
of the system matrix being x(B) = 2.5el5. The problem is advanced in
time to t = 0.1 at which time a maximum error of 3.7527e-6 is recorded.
The Matlab code that carries out the example is in listing 3.8. Comparing
the Matlab code for this example with the Matlab code in listing 3.4 for
the advection-diffusion equation in one-dimension illustrates how the MQ

10
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function cubicSchrodingerMQ ()

A = -10; B
dt
finalTime
N
X

10;

0.0001;

20;

300; shape = 2;
linspace (A,B,N)’;

ones (1,N);
x*0 - (x*0)’; r = abs(rx);
mgDerivatives (r,rx, shape,2);

H
M
oo

mq (r, shape) ;

dm2 Hxx/B;
U = sech(x);
hh = plot(x,abs(U),’erasemode’,’xor’);
set (hh(1),’Color’,[0 0 11); % numerical in blue

axis ([-10 10 -0.05 2]), xlabel(’x’), ylabel(’u(x,t)’), pause

n=0; t=0;
while n*dt < finalTime

rk4 (U,t,dt,QF);
t + dt; =n = n+i1; U = u;

u
t

set (hh (1) ,’ydata’,abs(u)), drawnow
end

function fp = F(u,t)
fp = ( -dm2xu - 8*((abs(u))."2) .*xu )/i;
end

Listing 3.7: cubicSchrodingerMQ.m

method is essentially the same in d > 1 dimensions as it is in one dimension.
The only differences in the computer code of the one dimensional problem
with equally spaced centers and the computer code of the two dimensional
problem on a irregularly shape domain is some bookkeeping to keep track of
which centers are located in the interior of the domain and which centers are
located on the boundary.

3.2.6 Hyperbolic PDEs

For any type of numerical method, Hyperbolic PDEs are the most challeng-
ing. Hyperbolic PDEs can be very sensitive to how boundary conditions
are applied. For the MQ collocation method, eigenvalue stability can be a
challenge as discussed in section 3.2.2. Nonlinear hyperbolic problems may
develop discontinuities (shocks) even if the initial conditions are smooth.
The MQ method is affected by the well-known Gibbs phenomenon when the
underlying function being approximated has discontinuities. Techniques to
alleviate the effects of the Gibbs phenomenon are in section 5.5.
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function heatComplexDomain ()

centers = dlmread(’centers.txt’,’ ’);
x = centers (:,1); y = centers(:,2); N = length(x);
bpi = dlmread(’centersBoundaryIndex .txt’,’ ’);
NB = length(bpi); NI = N - NB;
xb = x(bpi); yb = y(bpi); % re-order centers to put boundary centers last
ipi = NB+1:1:N; xi = x(dipi); yi = y(ipi); x = [xi; xbl; y = [yi; ybl;
o = ones (1,length(x));
rx = (x*o - (x%*0)’);
ry = (y*o - (y*o0)’);
r = sqrt( rx.”2 + ry."2 );
shape = 2; dt = 0.0005;
H = mgDerivatives (r,rx,shape,2) + mqDerivatives (r,ry,shape,2); % Evaluation matrix
B = mq(r,shape); % System matrix
dm = H/B; % discretization D, of linear operator L

finalTime = 0.1;

U = exactSolution (x,y,0); % initial condition

td = delaunay(x,y); hh = trisurf(td,x,y,U);

bpi = NI+1:N; % boundary points must be last
pause, t = 0;

while t < finalTime

u = rk4(U,t,dt,QF);

t =t + dt;

u(bpi) = exactSolution (x(bpi),y(bpi),t);
U = u;

hh = trisurf(td,x,y,U); drawnow;

end 7 while

xlabel ’x’, ylabel ’y’, pause
hh trisurf (td,x,y,abs (U-exactSolution (x,y,finalTime)));
er max ( abs (U-exactSolution (x,y,finalTime)) ), xlabel ’x’, ylabel ’y’, drawnow

function fp = F(u,t)
u(bpi) = exp(-5xtxpi~2) .*sin(x(bpi)*pi).*sin(2*pi*y(bpi));

fp = dmx*u;
end
function e = exactSolution(x,y,t)
e = exp(-5*t*pi~2) .*sin(x*pi) .*sin(2*%pix*y);
end
end

Listing 3.8: heatComplexDomain.m

25

The advection equation in one space dimension with appropriately spec-

ified initial and boundary conditions is

ou Ou
—— — =0 —1<zx<i t>0
ot Ox ’ =%=45

u(l,t) = 0, u(z,0) = up(x).

(3.25)
(3.26)

The MQ method is used to discretize the spatial derivative in problem (3.25)
with N = 40 equally spaced centers. The zero Dirichlet boundary condition
at x = 1 is enforced by setting the last row of the differentiation matrix to
zero (line 17 of listing 3.9). The eigenvalues of the discretized operator, scaled
by At = 0.04, are shown in figure 3.9 in relation to the RK4 stability region.
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Figure 3.8: Computational domain and center locations, 130 boundary cen-
ters and 505 interior centers, for problem (3.24).

The left image corresponds to a shape parameter of ¢ = 2 and a system
matrix with condition number x(B) = 2.9e15. Two of the eigenvalues have
positive real parts that are outside the stability region. For this example,
it was necessary to raise the shape parameter to € = 4 in order to get the
scaled eigenvalues to lie within the stability region. At this value of the
shape parameter the system matrix has a condition number of x(B) = 1.2€9.
The same problem is considered in section 5.2 using a nonconstant shape
parameter.

3.3 Chapter Summary

The MQ asymmetric collocation method is well established as a method
for the numerical solution of steady PDE boundary value problems. The
solution procedure simply involves solving a linear system of equations if the
PDE is linear. Nonlinear steady problems are solved by iterative methods in
which a linear problem is solved in each iteration. Although examples may
be constructed in which the evaluation matrix of the linear steady problem
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Figure 3.9: RK4 stability region and the scaled eigenvalues of the discretized
1d advection problem (3.25). Left: unstable spectrum with e = 2 and x(B) =
2.9e15. Right: stable spectrum with ¢ = 4 and x(B) = 1.2¢9.

is singular, an extensive amount of numerical evidence from a large number
of applications indicates that in applications the matrix is rarely, if ever,
singular.

Time dependent PDEs are discretized in space by the M(Q method and
then are typically advanced in time with a method of lines approach. Eigen-
value stability for hyperbolic problems remains a challenge and is an active
research topic.

0.5
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function advectionMQid ()

N = 40;
shape = 4;
dt = 0.001;
finalTime = 1;
x = linspace(-1,1,N)’;
o = ones(1,length(x));
rx = x*o - (x*0)’; r = abs(rx);
H = mqDerivatives (r,rx,shape,1); %
B = mq(r,shape); 3
dm = H/B; % discretization D,
K = cond (B); disp(’K(B): ’), disp(K)

dm(end,:)=0; % zero Dirichlet BC at x=1

U = exactSolution (x,0); exact =

hh = plot (x,U,x,exact,’erasemode’,’xor’);

set (hh (1) ,’Color’,[0 0 1]1); % numerical in
set (hh(2),’Color’,[1 0 01); % exact in red
axis ([-1 1 -0.05 1.05]), pause

t = 0;

while t < finalTime

u = rk4(U,t,dt,QF);

t =t + dt;

U = uj;

exact = exactSolution(x,t);

set (hh(1),’ydata’,u,’Color’,[0 0 1]),
exact, ’Color’,[1 0 0],’LineStyle’,’--"),
end
eInf = norm(U-exact,inf)
function fp = F(u,t)
fp = dm*u;
end

exactSolution (x,t)
-40%( (x-0.4 + t)."2) );

function ex =
ex = exp(
end

end

Listing 3.9:

CHAPTER 3. ASYMMETRIC COLLOCATION

evaluation matrix H
system matrix B
of linear operator L

exactSolution (x,0);

blue

set (hh(2),’ydata’,...

drawnow

advectionMQ1d.m



Chapter 4

Large N - small ¢ - small ¢=

The MQ method with a large number of N centers, and/or with a small shape
parameter €, and/or with a small minimum fill distance ¢= (2.9), may face
numerical implementation difficulties. All three issues may be encountered in
the same problem. Looking at each issue separately, we see that when using
a large number of centers the numerical difficulty is efficiency. The number of
floating point operations needed to solve a linear system with Gaussian Elim-
ination is O (N?3). The O (N?3) flop count is very computationally expensive
for large N. This issue can be addressed with domain decomposition methods
(section 4.6) and with iterative methods (section 4.5) that use precondition-
ing (section 4.5.1) techniques. Additionally, a greedy algorithm (section 4.7)
can be used to reduce the number of centers. A small shape parameter € and
a small minimum fill distance are both desirable for accuracy, but both cause
conditioning problems. The conditioning problem can be addressed with ex-
tended numerical precision (section 4.1), or by evaluating the MQ method
in a way that bypasses the ill-conditioned linear systems (section 4.2), or by
using algorithms other than Gaussian elimination to solve the linear systems
(sections 4.3 and 4.4).
In many of the following sections, the Poisson equation

Ugg + Uy = (A 4 ), (z,y) € Q (4.1)

u(,y) = X (z,y) € 09
is considered as an example with A = 0.3 and g = 0.8. The exact solution is
u(z,y) = eP*m) The domain (2 is taken to be the quarter circle in the left

image of figure 2.2. The N = 618 centers used for the problem are shown in
the left image of figure 2.2.

59



60 CHAPTER 4. LARGE N - SMALL ¢ - SMALL g=

4.1 Extended precision

The effects of poor conditioning in finite precision computer arithmetic can
be mitigated by using more digits of precision. The number of significant
digits in standard precision IEEE 64-bit floating-point arithmetic is dictated
by hardware architecture. Standard precision results in approximately 16
decimal digit accuracy. Expended precision involves software and computer
memory and results in considerably longer computations.

To illustrate the costs and benefits of extended precision computer arith-
metic, we revisit the Poisson problem (3.10) which was solved using the 60
scattered centers in figure 3.2. This problem was originally solved in section
3.1 using standard precision. The solution was computed 90 times over a
range of shape parameters and took 0.41 seconds on a computer representa-
tive of desktop technology in the year 2009. The extended precision example
was implemented using the variable-precision arithmetic (vpa) package from
the Matlab version 2007a symbolic toolbox. Solving the problem (pois-
sonExtendedPrecision.m) 5 times with 50 digits of precision over a set
of small values of ¢ took approximately 8 minutes of computer time. The
extended precision results (figure 4.1) show about 4 additional decimal places
of accuracy at small shape parameters when compared to standard precision.

In reference [113], numerical experiments were performed using extended
precision with 100-digit accuracy to gain some insight into the connection
between the accuracy of the MQ method, the fill distance h, and the shape
parameter. The authors determined that for a given h, an optimal value of
the shape parameter ¢ exists whose value should not be decreased unless A is
refined. Once that value of the shape parameter is reached, further reduction
of the error can be accomplished only by decreasing h.

Also in [113], the authors concluded that in order to achieve optimal ac-
curacy and efficiency in solving elliptic boundary value problems, it is better
to use a relatively coarse grid and extended precision than standard precision
and a fine grid. Using extended precision, the number of centers needed to
obtain a desired accuracy was significantly smaller than when using stan-
dard precision. Thus in our previous example, we should be able to match
the smallest error from standard precision calculations over a range of shape
parameters with an extended precision calculation using M < 60 centers.
Additionally, instead of using packages such as Matlab, the authors recom-
mended more efficient programs developed in C+4++ for extended precision
calculations. Extended precision algorithms will only be useful in applica-
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tions if they can be efficiently implemented so that better accuracy can be
realized using significantly smaller N and with less CPU time than if stan-
dard precision precision had been used.

RBF methods are not alone among areas in scientific computing that
benefit from extended precision floating arithmetic. A growing number of
such areas, as well as some extended precision computing environments, are
surveyed in references [0] and [7].

-2

10

max error

0 0.2 0.4 0.6 0.8 1
shape parameter

Figure 4.1: Standard precision (blue) and extended 50 digit precision (red)
maximum error versus the shape parameter.

4.2 Contour-Padé algorithm

In references [211] and [¢1], an algorithm called the Contour-Padé algorithm
is described for evaluating RBF approximation methods. The algorithm
avoids working directly with the associated ill-conditioned linear systems.
The algorithm stably calculates the RBF approximant for small values of
the shape parameter ¢ that cannot be handled by direct methods. The
method has proven useful in exploring the theoretically known, but previously
unreachable, accuracy at small values of the shape parameter. The use of the
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algorithm in applications is severely limited by the restriction that it only
works with a small number of centers.

The motivation for the algorithm starts by considering the use of complex
values of the shape parameters, ¢ = a + bi. Figure 4.2 shows the condition
numbers of the system matrices resulting from using shape parameters from a
square domain centered around the origin in the complex plane. Near € =0
the condition numbers approach infinity, but in floating point arithmetic
they remain bounded by approximately 10%'. In figure 4.2, there are several
sharp spikes that correspond to complex shape values where the system B is
singular. None of these can occur on the real axis as a result of the theorem
in section 2.3.

In a large region around € = 0, the RBF interpolant is a meromorphic (its
only singularities are poles) function [211] and therefore at a single center
can be written as

s(xg, ) = (rational function of €) 4+ (power series in €). (4.2)

If a circular contour around € = 0 can be found that avoids any branch points
of the RBF and where B is well-conditioned so that the RBF interpolant
can be evaluated by direct methods, the Contour-Padé algorithm can stably
determine the expansion coefficients in (4.2). Then the interpolant can be
evaluated for all ¢ < p where p is the radius of the circle. If there are any
poles inside the circle, the algorithm will have to compensate for the poles.
The details of the algorithm can be found in [31].

As an example, the Contour-Padé algorithm is used to approximate the
first order partial derivative with respect to x of the function f(x,y) =
exp(z/2+y/4) using the 60 scattered centers in figure 4.3. The approximation
is evaluated at the center that is located at approximately (0.7487,-0.1156)
and is marked with a red asterisk in figure. On the unit circle the maximum
possible distance between two points is 2, thus there will not be any branch
points closer than +i/2, so we must have p < 0.5. This is what limits the
algorithm to small N. However with only 60 centers a suitable circle is lo-
cated at p = 0.35. At the values of the shape parameter on the circle, the
system matrix has condition numbers of O (10e13) and the linear system can
be accurately evaluated using a direct method. Then the Contour-Padé al-
gorithm can evaluate the approximation over the epsilon range 0 < e < 0.35
at the center. The resulting error is show as a solid blue line in figure 4.4.
The results of the direct method using Gaussian Elimination are given for
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comparison. The Contour-Padé algorithm reveals the true optimal shape
parameter of ¢ = 0.12 for this calculation. The results are typical in that the
Contour-Padé algorithm usually shows that the optimal value of the shape
parameter is at some small, but nonzero value, at which direct methods are
unable to accurately resolve the linear systems involved.

Log k(B)

Figure 4.2: The condition number of the MQ interpolation matrix with com-
plex valued shape parameters. The z axis is on a log scale.

4.3 SVD based methods

The singular value decomposition [203] (SVD) of an invertible matrix B €
RN XN is
B=UxVT", (4.3)

The matrices V' are N x N orthogonal matrices and the N x N diagonal
matrix is ¥ = diag(oy,09,...,0n) with 01 > 09 > -+ > oy > 0. The g;’s
are called the singular values of B. The columns of U and V are the left
and right singular vectors of B respectively. The inverse of B via the SVD
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-15 - -0.5 0 0.5 1 1.5

Figure 4.3: Left: The Contour-Padé algorithm evaluates 0f /Ox at the center
marked with the red asterisk.

max |error|
=

0 0.1 0.2 0.3 0.4 0.5
shape parameter €

Figure 4.4: Gaussian Elimination (red dashed) and Contour-Padé (blue
solid) error versus the shape parameter for approximating df/0x of func-
tion f(x,y) = exp(z/2+ y/4) at the point (0.7487,-0.1156).
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is B! = VX7'UT and the SVD can be used to solve a linear system, such
as (2.4), as
a=VSluTy.

The operation count for the solving a linear system with the SVD is higher
than that of Gaussian Elimination, but it has numerical rank revealing prop-
erties [203] that can be useful when dealing with ill-conditioned matrices.

As an example, the Poisson problem (4.1) is solved and compared to
results obtained by solving the RBF system by Gaussian Elimination. The
results are illustrated in figure 4.5. The SVD solution is not qualitatively
different than the Gaussian elimination solution. However, the SVD method
can be modified so that it performs better with very poorly conditioned
systems.

max error

shape parameter

Figure 4.5: SVD results from problem (4.1). Accuracy versus the shape
parameter. Gaussian Elimination (solid blue) and the SVD (dashed red).

4.3.1 Truncated SVD (TSVD)

The SVD solution of an ill-conditioned system is dominated by the contri-
butions of very small singular values which may not have been computed
accurately. To lessen this problem, a regularization parameter ; can be in-
troduced and contributions from singular values with o; < p disregarded. If
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Figure 4.6: TSVD results from problem (4.1). Top: accuracy versus the
shape parameter and condition number. Gaussian Elimination (solid blue)
and TSVD (dashed red). Bottom left: the truncation threshold calculated
by equation (4.4) versus the condition number. Bottom right: The numerical
rank as determined by the threshold versus condition number. The full rank
is 618.
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k singular values are above the threshold, the inverse of B is computed via
the truncated SVD as

B/t =vy Ut
where ¥, = diag(1/01,1/09,...,1/04,0,...,0). The truncated SVD scheme
is widely used as an effective solver for ill-conditioned systems [96]. Matlab

code that implements the truncated SVD algorithm is in listing 4.1. If the
user does not supply a threshold value, the code uses the algorithm that
Matlab uses to determine numerical rank to decide how many of the singular
values are used in the solution. Matlab determines the numerical rank of a
matrix A € CM*N by calculating a threshold

pu=max(M, N) X eps(omax) (4.4)

where eps(x) is the positive distance from |z| to the next larger in magnitude
floating point number of the same precision as x. The numerical rank is the
number of singular values that are greater than the threshold.

function [x,invA,r,thres] = truncatedSvd (A,b,thres)

[U,S,V] = svd(A);
sigma = diag(S);

if nargin<3, thres = max(size (A))*eps(max(sigma)); end

T
Si
invA
X

sum( sigma > thres ); % estimate of numerical rank
diag ( (sigma > thres)./sigma );

VSixU~’;

V*Si*(U’*b);

Listing 4.1: truncatedSvd.m

The solution of the Poisson problem (4.1) by the TSVD solver (pois-
sonTSVD.m) is compared to the Gaussian Elimination solution in figure
4.6. Equation (4.4) is used to calculate the threshold that determines how
many of the singular values are used to solve the linear system. The accuracy
is compared over a range of shape parameters and against the corresponding
condition number in the upper two images in the figure. With shape pa-
rameters less that 2, the TSVD is more accurate than Gaussian elimination
or the standard SVD method as shown in figure 4.5. The lower left image
of figure 4.6 shows that for this example, the truncation parameter is about
107 when the condition number is relatively small and that it decrease as
the condition number increases. The bottom right image shows how many
singular values are used versus the condition number of the system matrix.
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All singular values are used until x(H) ~ 10'® and then a gradual reduction
occurs until k(H) ~ 10% at which point the TSVD uses less than 100 of
the 618 singular values to compute the solution. The accuracy of the TSVD
solution of this problem could not be improve by using either a larger or a
smaller threshold than was computed by equation (4.4).

4.3.2 Improved Truncated SVD (ITSVD)

In [204], the authors describe an another truncated SVD solver that is claimed
to perform better than the truncated SVD. The method does not disregard
any of the singular values. It uses all the information contained in the SVD,
but projects the very small singular values onto the nullspace to construct a
more stable method. In references [139] and [56], the authors report good re-
sults in using the I'TSVD with the MQ collocation method for PDEs. Matlab
source code for the ITSVD solver is in listing 4.7.

function [x,alnv,r,thres] = improvedTruncatedSvd (A,b,thres)
[V,S,U] = svd(A);
sigma = diag(S);
if nargin<3, thres = max(size (A))*eps (max(sigma)); end
3 % if nargin<3, thres = max(sigma)*(10e-8); end
r = sum( sigma > thres )8 % estimate of numerical rank
sigmal = diag( 1./diag(S) ); % inverse of full §

I diag(S) >= thres;

m = min(find (I==0)); % m is index of first sigma thresholdeded
Si = diag( I./diag(Ss) ); % inverse of thresholded S
x1 = UxSi*(V’*b); % truncated SVD solution
if m>=1
Ul = U(:,1:m); % left singlular vectors of TSVD
Vi = V(:,1:m); % right singlular vectors of TSVD
U2 = null (U1°); % orthogonal complement of Ul
V2 = null(V1’); % orthogonal complement of V1
b2 = V2’xb;
C = V2’*xAxU2;
kappaC = cond (C)
z2 = (U2’)*(UsxsigmaI*V’)*(V2)*V2’xb; % or z2 = C\b2;
x = x1 + U2xz2;
alnv = UxSi*V’ + U2%(U2’)*(Uxsigmal*V?’)*(V2)*(V2°’);
else
x = x1;
alnv = Ux*xSix*V’;
end

Listing 4.2: improved TruncatedSvd.m
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max error
max error

shape parameter shape parameter

Figure 4.7: ITSVD results from problem (4.1), accuracy versus shape,
ITSVD solution (dashed red) and Gaussian elimination (solid blue). Left:
threshold = max(c) x 1078, Right: same threshold (4.4) as the TSVD.

The results of applying the ITSVD solver (poissonITSVD.m) to the
Poisson problem (4.1) are in figure 4.7. In the right image the same threshold
(4.4) as the TSVD is used and the results are similar to when the standard
SVD procedure is used. In the results in the right image a threshold of
max (o) X 1071% is used. In this example, the “improved” truncated SVD
solver does not show any improvement over the TSVD method. However, in
[56], the authors demonstrate better results by taking the threshold param-
eter to be

threshold = max(c) x 1075, (4.5)

The authors also recursively apply the ITSVD solver to the matrix C' if the
condition number is beyond a certain threshold.

If the errors from using the SVD to solve a poorly conditioned linear
system are indeed due to the smallest singular values being inaccurately
computed, then the motivation for using the small singular values in the
ITSVD scheme seems questionable. Analysis of the stability properties as
well as more thorough numerical experiments should be performed before
the ITSVD is accepted as an improvement to the TSVD method.
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4.4 Affine Space Approach

The Affine solver is not for use with general RBF linear systems, but is a
specialized solver for linear boundary value problems. The RBF matrix that
discretizes PDESs consists of two parts: the part that discretizes the PDE on
the interior of the domain and the part that collates the boundary condi-
tions. It is hypothesized that these two contributions are scaled dramatically
different which in turn worsens the conditioning problem as compared to just
interpolation. The affine space approach separates the boundary and interior
contributions in order to lessen the conditioning problem [113].

Consider the asymmetric RBF collocation discretization of steady bound-
ary value problem

or

O\ = 0.
From above we know that
(I)B>\ =4.

Let the pseudoinverse of ®5 be denoted by ®f, € RN*N# and the null matrix
of &g by Up € R¥*N1. Then A must lie in an affine space of a vector space

formed by the columns of ¥y over a field {@%g}. So

A= @Egjt Upy such that ®p¥p =0
and
Pp) = (I)B(I)TBQ +®p¥py =g.
Substituting into
A= f
we get
@y (Phy+ Wpy) =/
or
(@LUp)y = f — drPhy. (4.6)

The reduced matrix ®; ¥z € RV *N1 has orthonormal columns. Thus, the
length scale is determined completely by the PDE operator on the interior.
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In [143], the authors develop several versions of the affine solver. We con-
centrate on the one that features the SVD (ASVD). Other versions feature
the QR algorithm and Gaussian Elimination. In the ASVD approach, both
®f, are ®p formed via the SVD. @, is the inverse of ®p ignoring the sin-
gular values less than a threshold value, tol, and the null matrix consists of
the right singular vectors corresponding to the singular values less than tol.
The reduced system (4.6) is solved by the SVD as well. The ASVD solver
gives extra flexibility to the asymmetric collocation method since it gives the
method the ability to handle identical or extremely close centers. Addition-
ally, the ASVD method allows safe computation over a large range of shape
parameter. Matlab code that implements the affine solver is in listing 4.3.

function lambda = affinceSpaceSvdSolver (H,Nb,Np,f,thres)

phiB
phil

= H(1:Nb,:);

= H(Nb+1:Np,:);

[u,s,v]
sigma

= svd(phiB);
= diag(8);

if nargin<5, thres = max(size (phiB))*eps(max(sigma)); end

sum ( sigma > thres DI % estimate of numerical rank
diag ( (sigma > thres)./sigma );

r
Si
phiBdag = V(:,1:Nb)*SixU’; % phiBdag = pinv (phiB);

[U,S,V] = svd(phiB);

psiB = V(:,Nb+1l:end); % psiB = null (phiB);
F = £(Nb+1:Np);
G f(1:Nb);

[u,s,v]
sigma

= svd(phiL*psiB);
= diag(8);

if nargin<5, thres = max(size (phiL#*psiB))*eps(max(sigma)); end

sum( sigma > thres );
diag( (sigma > thres)./sigma );

r
Si
% gamma (phiL *psiB)\ (F-phiL *phiBdag*G) ; % or using GE

gamma = V*Si*U’*(F - phiL*phiBdagx*G) ;
lambda = phiBdag#*G + psiB*gamma ;

Listing 4.3: affinceSpaceSvdSolver.m

Again, we consider the Poisson problem (4.1). The truncation parameter
in the TSVD solver is set to 4 = 10e — 11 as for this problem it produced
better results that using formula (4.4) for u. The Affine solver results are
illustrated in figure 4.8. In the results, the Affine solver produced more
accurate solutions that did Gaussian Elimination over a range of small shape
parameters.
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max error

shape parameter

Figure 4.8: Affine solver results from problem (4.1) with tol = 10e-11, ac-
curacy versus shape. Gaussian Elimination (solid blue) and Affine solver
(dashed red).

4.5 GMRES iterative method

For RBF approximations with large N, using direct methods to solve the
linear systems may not be possible due to their O (N?) flop count and O (N?)
storage requirements. However, iterative methods have been successfully
used to evaluate RBF approximations of problems with N > 10,000. The
goal of iterative methods is to reduce the residual r, = || Bay — f|| to below
a specified tolerance by taking a small number of iterations k£ < N with each
iteration having a flop count of O (N?) or less.

The GMRES (Generalized Minimal Residual) method [203] is a univer-
sally applicable (it does not require B to have special properties such as sym-
metry) Kyrlov subspace iterative method for solving linear systems Ba = f.
In a basic implementation taking k iterations, the total storage requirements
are O (kN) and the flop count is O (k*N). With some additional techniques,
this can be reduced to O (N) storage and O (N log N) flops respectively [12].
The convergence of the GMRES method depends on the locations of the
eigenvalue of B in the complex plane. If B has a single cluster of eigenvalues
and some outliers, the bound [37]

I7rslly < Imoll, Co"
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holds where 7 is the number of outliers, C' quantifies the distance of the
outliers to the cluster, and p is the radius of the clustered eigenvalues. The

next section discusses a preconditioner for accelerating the convergence rate
of the GMRES method.

4.5.1 Approximate Cardinal Basis Function Precondi-
tioning

function neighbors = generateACBFStencils (x,y,ns,speciall)

n
number0fSpecialPts
neighbors

length(x);
length(speciall);
zeros (n,ns+number0fSpecialPts);

Xt = x; yt =7y;
x(speciall) = lelb;
y(speciall) = 1lel5;

for i=1:n

neighbors (i,1:number0fSpecialPts) = speciall;
x0 = x(i);
yo = y(i);
r = sqrt ((x(:)-x0)."2 + (y(:)-y0)."2);
[r,ix] = sort(r);
neighbors (i,number0fSpecialPts+1:end) = ix(1:ns);
end
== e Hhe gpeeial pEeinEg sososssocsoossoooossososess
x = xt; y = yt;
for j=1:numberOfSpecialPts
i = speciall(j);
neighbors (i,1:number0fSpecialPts) = speciall;
x0 = x(i);
yo = y(i);
r = sqrt ((x(:)-x0)."2 + (y(:)-y0)."2);
[r,ix] = sort(r);
neighbors (i,number0fSpecialPts+1:end) = ix(2:ns+1);

end

Listing 4.4: generate ACBFStencils.m

Approximate Cardinal Basis Function (ACBF) preconditioning is de-
signed to tightly cluster eigenvalues of the preconditioned matrix around
one so that the Generalized Minimal Residuals (GMRES) iterative method
converges in a small number of iterations. The method computes a precon-
ditioner W such that

WBa =W f

is easier to solve by GMRES than equation Ba = f. ACBF precondition-
ing was first used for the RBF interpolation problem in [12]. Later ACBF

preconditioning was used with the RBF asymmetric collocation method for
PDEs in [144], [145], and [27].
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To set up the ACBF preconditioner, a small subset of centers from = of
size Ny < N is selected for each center x¢, and the indices of the support
centers are put in the index set

S, = [351), s sl(-NS) . (4.7)
The support centers consist of some nearest neighbors to the center x{ as
well as a group of special centers that cover the domain with a very course
mesh. In figure 4.9, the special centers are the seven red colored centers
on the boundary as well as the one red colored center in approximately the
middle of the domain. The addition of the special points to the stencil has
been found to improve the performance of the preconditioner on unbalanced

stencils such as those near boundaries [12]. Then condition
> widi(x) =6i(x), forall x€E (4.8)
JES;

is enforced. If equation (4.8) is enforced for all x € =, the inverse matrix is
formed. Instead, with Ny < N, equation (4.8) is satisfied in a least squares
sense. A sub-matrix B; of the system matrix B is associated with each center
x{ . The Ny x N sub-matrix contains the rows of B corresponding to the the
index set S;. Thus,

B(s;". 1) B(s".2) B(s; . N)
s | BT B(sY2) B(s”, N)
B(s™ 1) B(s™,2) B(s™), N)

and equation (4.8) can be written in matrix form as
Bl'w; = ¢; (4.9)

where e; is the ¥ standard unit vector and w contains the nonzero elements
of the i*" row of W.

Finally, the preconditioner W is formed by solving N least square prob-
lems. The least square problem may be solved by either using the QR fac-
torization or the SVD [203]. In the examples we have used the reduced SVD
to solve equation (4.9). For Ny < N, the reduced SVD is

B=UxvT
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where U has dimension N x N, and 3 and VT are N, x Ng. The solution of
equation (4.9) is then computed by first solving the diagonal system

iq = UTQZ'
for ¢ and then

w; = Vq.
Forming the the ACBF preconditioner naively using the SVD requires results
in a setup cost of O (N2N? 4+ N3N). Tt is shown in [145] that the setup cost
can be reduced to O (N,N? + N2N). A Matlab function that implements
the preconditioner is in listing 4.5. In reference [I111], the authors combine

the techniques of preconditioning and domain decomposition to efficiently
solve problems using more that 10,000 centers.

As an example, the ACBF preconditioner is applied to problem (4.1).
We have taken N, = 28 with the 28 supporting points consisting of the 20
nearest neighbors and the eight special points from figure 4.9. The Matlab
code that finds the stencils is in listing 4.4. With ¢ = 7, the condition
number of the matrix H is k(H) = O (10€9) and the preconditioned matrix
W H has the condition number k(W H) = O (10e2). The eigenvalues of H
and W H are shown in figure 4.10. GMRES converged in 35 iterations with
a relative residual of 9.3e-9 and the error in the MQ Poisson solution was
9.7e-4. Larger shape parameters allowed the solution to converge in fewer
iterations. Evaluating the example at other values of the shape parameters
leads us to the same conclusion as in [145]. The preconditioner effectively
lowers the condition number and clusters the eigenvalues so that GMRES
converges in a small number of iterations, provided the condition number
of the original problem is not too large. In this example, the number of
iterations required for convergence grows with the condition number until
the original problem has a condition number of approximately O (10ell) at
which point the GMRES solution of the preconditioned problem does not
converge.

4.6 Domain Decomposition

Domain decomposition methods are another tool for dealing with large N.
The methods are based on the assumption that the given computational do-
main () is partitioned into subdomains €2;, ¢ = 1,..., M which may or may
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in green (*). Left: interior point. Right: boundary point.
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Figure 4.10: ACBF preconditioning example. Left: Eigenvalues of H. Right:
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Approximate Cardinal Function Preconditioner
Input

A N x N matrix
neigh neighorhoods of each centers

p)
pA
p)
%
"
"
% Output

% W preconditioned matrix

function W = acbfPreconditioner(A,neigh)

N = length(A(1,:));
W = zeros (N,N);

for i=1:N

[u,s,v]
W(i,neigh(i,:))

svd (A(neigh (i,:),:)’,0);
CUx( S\(U(@i,:)*)) )75

end

Listing 4.5: acbfPreconditioner.m

not overlap. Then a subproblem of reduced size is solved on each subdomain
;. Often, the M smaller subproblems may be solved with considerably less
computational effort that it would take to solve the original problem on the
entire domain. Domain decomposition methods also present the opportunity
for the MQ method to be efficiently implemented on parallel computers. The
family of subproblems are coupled to each other through the values of the
unknown solution at the subdomain interfaces. Domain decomposition meth-
ods have been developed for finite difference, finite volume, finite element,
and spectral methods for PDEs. An analysis of a large number of domain
decomposition strategies can be found in the book [181].

In the RBF field, Hardy was the first to use a domain decomposition
method in [98] in an application of the MQ method in image processing.
Additional applications of domain decomposition with RBF methods can be
found in references [137, , , , 46, 159].

The follow example illustrates an overlapping multiplicative Schwarz al-
gorithm for an Elliptic PDE using M = 3 subdomains. The example is for
illustrative purposes only. With a further division into smaller subdomains
the problem could be solved more efficiently. Problem (4.1) is solved using
the domain and centers in figure 4.11. The domain 2 is divided into three
overlapping subregions (figure 4.11). Artificial boundaries I'; are defined on
the parts of €2; that are in the interior of ). The remaining portion of the
boundary (the natural boundary) is denoted by 0€2;\I';. The multiplicative
Schwarz method for the problem is to first solve

Lé" = f in O (4.10)
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B¢! = g on 0\I'; (4.11)
oy = ¢y' on T (4.12)
then
Loy = f in (4.13)
Boy = g on 0\ (4.14)
o= ¢t on Ty (4.15)
and finally

Loy = f in

B¢y = g on 00Q3\I's
o5 = ¢f on I
o7 = ¢y on I%

The method is iterated until convergence criteria are satisfied. One possibil-
ity is to stop the iteration when the change in the solution at every center
is less than a desired tolerance. For comparison, the problem is first solved
on the entire domain with € = 2.9 which results in a RBF evaluation matrix
with condition number x(H) = 6.5¢16. The calculation takes 0.35s and the
maximum error is 7.7e-5. In the domain decomposition method, we take
the shape parameter as ¢ = 2.4 is each subregion which results in evalu-
ation matrices with condition numbers x(H;) = 1.5e18, k(Hy) = 9.8¢l7,
and k(Hjz) = 7.6el7. The initial condition on the artificial boundaries are
taken as the average of nearby points on the physical boundary. The method
converges with 20 iterations in 0.15s with a maximum error of 6.7e-5. The
domain decomposition method achieved a slightly smaller error with less than
half of the computing time. The Matlab code that reproduces the domain
decomposition example is in m-file potssonDomainDecomp.m.

For parallelization, the additive Schwarz method is preferred. In [I 1], a
3d time-dependent diffusion equation was solved using 20,000 centers with
up to 64 subdomains. Each subdomain was assigned to a processor.

4.7 Greedy Algorithm

Greedy algorithms ([116] and references within) work by first selecting a set of
centers from a larger set in an adaptive way that keeps the condition number
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Figure 4.11: Subdomains and boundaries for domain decomposition of prob-
lem (4.1).

moderate and prevents numerical breakdown. In [110], a greedy algorithm is
analyzed that uses a linear optimization scheme to select the n trial centers.
After the subset of n centers is selected, the linear optimization algorithm
performs a fit to all N > n available test centers.

In reference [116], it was demonstrated that the over-determined linear
system is best solved by a least squares solver rather than the linear opti-
mization solver. Our numerical experiments confirmed this conclusion. This
can be accomplished in Matlab using the backslash operator which solves the
least squares problem using QR decomposition. Numerical results show that
the proposed method is very stable. Matlab code for the greedy algorithm
is in listing 4.6. The authors would like to thank Leevan Ling for providing
the source code that listing 4.6 is based on.

As an example, the greedy algorithm is applied over a range of the shape
parameter to the Poisson problem (3.10). The results are in figure 4.12.
With a shape of ¢ = 0.1 (poissonGreedySingleShape.m), the smallest
maximum error of 2.4e-9 is achieved with only 19 centers from the set of 60
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1 % Takes matB (MC x nc*MC) matrix, with nc different

2 % values of c to find a column set, colset, of length MC. This method
3 % depend on the rhs column vector. Solve matB*ans = rhs

4

5 function [colset,ans] = greedyAlgorithm (matB,rhs)

6

7 [MC,NC] = size(matB);

8 mrhs = length(rhs);

9 m = MC-1;

10 n = NC-1;

11 mat = zeros (MC,NC);

12 rhsB = zeros (MC,1);

13 rhsB = rhs;

14 mat = matB;

15

16 [mv imv] = max(abs(rhs )); % get maximum residual
17 [nv inv] = max(abs(mat(imv,:))); % maximum in corresponding rowmat
18

19 coef = zeros(NC,1);

20 ainv = pinv (mat (imv,inv) ); % psuedo inverse

21

22 coef (inv ,1) = rhs(imv,1)*ainv;

23  mcoef = length(coef);
24 mimv = length(imv);

25 ninv = length(inv);
26
27 colset = [inv]; % this will be the selected column set
28 rowset = [imv]; % this will be the selected row set
29 v = zeros (MC,1);
30 v(imv,1) = -coef (inv,1)*ainv;
for k=2:MC; % loop for the new primal-dual algorithm

r = mat*coef-rhs;
q = (coef+mat’*v);

[mv imv] = max(abs(r));
[nv inv] = max(abs(q));
rowset = [rowset imv];
colset = [colset inv];
localMatrix = mat (rowset ,colset); % set up local system
[mM,nM] = size (localMatrix);
kappalLocalMatrix = cond(localMatrix);

if kappalLocalMatrix > 1e18, break; end

rhsloc = rhs(rowset);
inv_mat = pinv(localMatrix); % solve local system

Mrhs = length(rhsloc);

[minmL ,ninML]
[minvmtK ,ninvmtK]

xloc
vloc
coef (colset ,1)
v(rowset ,1)
end

ans = coef (colset);

size (localMatrix)
size (localMatrix) ;

inv_mat*rhsloc;
-(inv_mat ’)*xloc;
xloc;

vloc;

Listing 4.6: greedyAlgorithm.m
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trial centers as shown in figure 4.13. The greedy algorithm solution is more
accurate with 19 centers than any solution that was obtained over a range of
shape parameters using all 60 centers in section 3.1. As the shape parameter
e gets smaller the greedy algorithms selects fewer and fewer centers. In figure
4.12, the performance of the greedy algorithm is shown over a range of shape
parameters and is compared with the solution using all 60 centers. In the
right image of the figure, the number of selected centers is shown for each

value of the shape parameter.

10 T T T T 70

max error
=)
centers used

10

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4
shape parameter shape parameter

Figure 4.12: Greedy algorithm solution of equation (3.10). Left: Error versus
the shape parameter. Standard method (blue) with all 60 centers, Greedy
(red). Right: Number of centers selected by the Greedy algorithm versus
shape parameter.

The Greedy algorithm can be used to select values of the shape param-
eter (greedyInterpolation.m) as well. To illustrate, we use the Greedy
algorithm to select both the center locations and the shape parameters in
interpolating the function

flx) = et g e [—1,1]. (4.20)

We start with N = 40 equally spaced centers on the interval [—1,1]. As pos-
sible candidates for centers and shape parameter combinations, we consider
22 values of the shape parameter with each of the 40 centers. The 22 shape
parameters are € = 0.5, 0.1,...1.05, 1.1. The Greedy algorithm selected 23

0.5
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Figure 4.13: Greedy algorithm solution of equation (3.10). With ¢ = 0.1,
the Greedy algorithms selects 19 (squares) of the original 60 centers. The
maximum error is 2.4e-9.

center/shape combinations as shown in figure 4.14. The maximum error in
interpolating the function using the selected centers/shapes is 1.5e-7. Note
that the center at x = —1 is used twice, once with ¢ = 0.65 and once with
e = 1.1. The center at x = 1 is used four times, with ¢ = 0.05, 0.4, 0.8, 1.1.

3 ‘.OO.'O L X J .'.O OOO' LN N J :
1t
5 0.81
2
°
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o
(0]
Q.
S04t
w
0.2f
0 - - - (s - - -
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5
X center location

Figure 4.14: Greedy algorithm for interpolating function (4.20). Left: pos-
sible center locations (black), selected center locations (red). Right: shape
parameter values at the selected center locations.
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Recently in reference [117], an improved greedy algorithm has been de-
veloped which was shown in numerical experiments to outperform the greedy
algorithm of [116].

4.8 Chapter Summary

The GMRES iterative method with ACBF preconditioning and Domain De-
composition can be efficiently used with large N to implement the MQ
method with a flop count of less than O (N?3). Several methods were ex-
amined for accurately solving linear systems that result from using small
centers and/or from having centers very close together in the MQ method.
For small N, the Contour-Padé algorithm is a valuable tool for examining
the accuracy of RBF methods with small values of the shape parameter ¢.
Using extended precision reveals the true accuracy of the MQ method but
does so with a large increase in computational cost. Extended precision is
justified if the same accuracy is realized with fewer data centers in a way that
results in the total CPU time of the extended precision calculation being less
than that of the standard precision calculation. RBF methods would benefit
from improved computer architectures and software that could efficiently im-
plement extended precision floating point arithmetic. In many places in the
literature, SVD based algorithms have been cited as accurate linear system
solvers for used with RBF methods. However, on our test problems, the SVD
methods were outperformed by Gaussian Elimination with partial pivoting.
The Affine Space solver for linear PDE boundary values problems displayed
some promising accuracy at small values of the shape parameter . Finally,
a greedy algorithm was found to be very effective in selecting both shape
parameter values and center locations in order to accurate resolve problems
using a small number of centers.
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Chapter 5

Additional Tools, Techniques,
and Topics

5.1 Formulas and Strategies for Shape Pa-
rameter selection

Many attempts have been made at finding, by numerical experiments or
heuristic arguments, an “optimal” shape parameter. The simplest strategy,
brute force, is to evaluate the MQ interpolant over a range of the shape
parameter and call the value that results in the smallest error, optimal. In
addition to being extremely inefficient, the strategy only works if the function
being approximated is known.

The first formulas for “good” shape parameter values depended on the
spacing between centers. In an early work, Hardy [97] recommended using

N
1

=0815d where d=—Y d; 5.1

c where N 2 (5.1)

and d; is the distance from the i center to its nearest neighbor. This is
easily calculated in Matlab in terms of the distance matrix r as

¢ = 0.815*sum(min(r, [1,2))/N

Later, Franke [91] offered a similar formula
c=(1.25D)/VN (5.2)
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where D is the diameter of the smallest circle enclosing all the centers.

Another strategy for selecting good values of the shape parameter is the
statistical tool leave-one-out cross validation (LOOCV). In this algorithm,
an optimal value of € is selected by minimizing a cost function that collects
the errors for a sequence of partial fits to the data. The predicted “optimal”
shape parameter is usually close to the optimal value that would be found
by the brute force method. In reference [182], the LOOCV algorithm was
used for choosing an optimal value of the RBF shape parameter in the set-
ting of scattered data interpolation. Subsequently, LOOCV was used in the
context of RBF collocation methods for PDEs [67]. Listing 5.1 contains a
Matlab script taken from reference [67] that calculates the cost function for
a scattered data interpolation problem.

function costShape = costFunctionShape (shape,r,f)

B = mq(r,shape);

invB = pinv(B);
E = (invB*f)./diag (invB); % cost matrix
costShape = norm(E(:),inf);

Listing 5.1: costFunctionShape.m

As an example, the shape strategies are used to calculate a shape parame-
ter for interpolating the Franke function (2.8) using the 618 scattered centers
in the left image of figure 2.2. The results are summarized in table 5.1. The
shape parameters ¢ have been converted to e = 1/c. Listing 5.2 calls the
script in listing 5.1 to find the minimum of the LOOCYV cost function and to
find the shape parameter.

% interpolationFrankeExampleL0OOCV
X dlmread (’frankeProblemCenters .txt’,’ ’);

xc(:,1); y = xc(:,2);

length(x);

frankesFunction (x,y);

ones (1,N);

sqrt ( (x*o - (x*¥0)’)."2 + (y*o - (y*0)’)."2 );

O Hh =X O

r

[shape ,fval] = fminbnd( @(sh) costFunctionShape (sh,r,f), 1 ,5);
display (’optimal shape by LOOCV: ’), display(shape)

Listing 5.2: interpolationFrankeExample LOOCV.m

The left image of figure 2.9 plots the interpolation error from this problem
over a range of shape parameter for this example and the optimal brute force
shape parameter of ¢ = 2.8 is identified. The LOOCYV optimal shape is nearly



5.2. VARIABLE SHAPE PARAMETER 87

method £ k(B) | max |error|
equation 5.1 | 26.43 | 3.2e5 2.00e-3
equation 5.2 | 14.06 | 4.4e6 1.11e-3
LOOCV 2.9021 | 2.8e16 6.58e-6
brute force 2.8 | 8.1el6 4.27e-6

Table 5.1: Summary of shape parameter strategies for interpolation of func-
tion (2.8).

identical to the brute force optimal shape, while the strategies in equations
(5.1) and (5.2) are not particularly effective in this example.

Various other attempts have been made to give formulas for a good values
of the shape parameter, such as in references [75] and [201]. Many of the
attempts to provide formulas for good values of the shape parameter reflect
the uncertainty principle. The strategies have been developed by numerical
experiments to produce a system matrix with a sufficiently large condition
number to give good accuracy, but not too high so that errors began to
dominate.

5.2 Variable Shape Parameter

Due to the extreme generality of RBF methods, it is very difficult to estab-
lish theoretical results. When theoretical results have been proven, in most
cases a constant value of the shape parameter has been assumed. When a
non-constant shape parameter is used, the theoretical analysis of the RBF
methods becomes even more complex. However, in reference [21], sufficient
conditions are provided for the non-singularity of the system matrix, B, aris-
ing from the use of a variable shape parameter.

Heuristically it has been argued that using a variable shape parameter is a
good idea. A variable shape parameter refers to using a different value of the
shape parameter at each center. This results in shape parameters that are the
same in each column of the interpolation matrix, B. One argument for using
a variable shape parameter is that it leads to more distinct entries in the
RBF matrices which in turn leads to lower condition numbers. One negative
consequence of using a variable shape is that B is no longer symmetric.
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In [117], the formula

2 ggnax Jj\r;jl ’ .
€ = |Emin | = j=1,...,N (5.3)

6min

which gives an exponentially varying shape parameter, was suggested in order
to have a different value of the shape parameter with each basis function in
the expansion (2.29). The shape parameter strategy (5.3) works equally as
well as formula for ¢; using definition (2.1) of the MQ. This is due to the
reciprocal relationship between the shape definitions and the fact that it
does not matter whether the shape parameter increases or decreases with
the center number [I17]. Further numerical experiments with the variable
shape parameter strategy (5.3) can be found in reference [123]. In [123] it
was shown that very accurate approximation results could be obtained if 2,
and €2 varied by several order of magnitude. The strategy was successful
even when the underlying function varied rapidly or had steep gradients.
However, also in reference [123], it was shown that this recipe did not always
work. One such example was the surface of a sphere where a constant shape
parameter worked the best.

Another variable shape parameter strategy is the linearly varying param-
eter

Emaz — Emin . .
i = Emin —_ =0,1,...,N—-1. 5.4
Recently, good numerical results have been reported [185] with the random

variable shape strategy parameter
€j = Emin + (Emaz — Emin) X rand(1,N). (5.5)

The function rand is the Matlab function that returns N uniformly dis-
tributed pseudo-random numbers on the unit interval. Equation (5.5) re-
turns N random shape parameters between ¢,,;, and ¢,,,., and unlike the
strategies (5.3) and (5.4), the parameters are not monotone increasing or
decreasing.

With €, = 2 and €,,40 = 4€min, the three variable shape strategies are
used to calculate shape parameters for interpolating the Franke function (2.8)
using the 618 scattered centers in the left image of figure 2.2. The results
are summarized in table 5.2. The results with other ranges of ,,;, and €,,4.
were similar. The exponentially varying strategy (5.3) gave the best results
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method | x(B) | max|error|
(5.3) | 9.0¢19 | 8.8¢5
(5.4) | 4.9e19| 1.1e-3
(5.5) | 3.6e15| 5.4e-4

Table 5.2: Summary of some variable shape parameter strategies for inter-
polation of function (2.8).

method | k(H) | max|error|
(5.3) | 52019 | 2.12e-10
(5.4) | 7.5¢19 | 3.73e-10
(5.5) | 3.2e19| 1.90e-10

Table 5.3: Summary of some variable shape parameter strategies for the
elliptic PDE (4.1).

on this problem but was unable the match the accuracy of the constant shape
strategies of brute force and LOOCYV of the previous sections.

Next, with €,,;, = 0.4 and €, = 4€min, the three variable shape strate-
gies are used to calculate shape parameters for the Poisson problem (4.1).
In contrast to the previous variable shape interpolation problem, all three
variable shape strategies give about four more decimal places of accuracy
than the best constant shape result which had a maximum error of 1.35e-6
with ¢ = 2.0. The variable shape Poisson results are summarized in table
5.3.

The Greedy algorithm of section 4.7 is also a very effective method to
specify the shape values in a variable shape parameter strategy. The was
demonstrated in section 4.7 where the greedy algorithm was used to select
both the subset of centers to use and the value of the shape parameter at
each center.

In [210], the generalized MQ RBF (2.28) was used with a variable shape
parameter strategy. In addition to varying the shape parameter €, the expo-
nent § was also considered a shape parameter as it also determines the shape
of the basis functions. In this type of shape parameter strategy, both ¢ and
£ may be non-constant.

A variable shape parameter strategy has been used to successfully mit-
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igate the effects of the Gibbs phenomenon that is associated with approxi-
mating discontinuous functions (reference [116] and section 5.5). In neighbor-
hoods around discontinuities, the shape parameter ¢ in the MQ is set to zero
and the MQ becomes a first order linear spline with a first order algebraic
convergence rate.

In section 3.2.2 eigenvalue stability was examined for the MQ spatial dis-
cretization of the advection equation 3.25. With N = 40 equally spaced
centers, the smallest constant shape parameter that could be used to get a
differentiation matrix with eigenvalues with non-positive real parts was ¢ = 4.
Using the variable shape parameter (5.3) with &,,,, = 2.5 and €,,;, = 1.8 re-
sults in a system matrix with x(B) = 2.2e+15 and a differentiation matrix
with eigenvalues (left image of figure 5.1) all with non-positive real parts.
To compare the accuracy (advectionVariableShape.m) of the two ap-
proaches, an initial condition of ug(z) = e 4°@=94* is advanced to time
t = 1 with a small time step of At = 0.001 to minimize temporal errors. The
constant shape approach has a maximum error of 2.4e-5 while the variable
shape approach has a maximum error of 2.02e-6. In this example, the vari-
able shape approach results in overall better accuracy, while working with
a system matrix with a higher condition number, but with a differentiation
matrix with eigenvalues that all have non-positive real parts which allows for
stable time integration.

5.3 Connection to Global Polynomial Approx-
imation Methods

We have seen that small, but nonzero values of the shape parameter ¢ usually
yield the best accuracy in numerical examples. Recently, RBF approxima-
tions in the limit ¢ — 0 have been shown to have interesting properties. In
the limit ¢ — 0, the condition number of the system (2.4) grows rapidly
and without bound. This fact has been a barrier to numerical investigation.
However in [52], it was theoretically shown in 1-D that if some easily satisfied
conditions are met in the limit € — 0, that the MQ interpolant is equivalent
to the minimal-degree Lagrange interpolating polynomial. In higher dimen-
sions, the limit may not exist. But when the limit does exist, it is a low
degree multivariate polynomial [52]. References [128], [82], [32], [33], [132],
and [190], provide further analysis of the limit ¢ — 0 in two dimensions.
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Figure 5.1: Left: stable spectrum for variable shape spatial discretization

of problem (3.25). Right: variable shape numerical versus exact solution at
t =1 of problem (3.25).

The most interesting interpretation of this result is that in the limit ¢ — 0,
the MQ RBF method reproduces all the classical pseudospectral methods
[100] such as Fourier, Chebyshev, and Legendre, whenever the center loca-
tions correspond to the pseudospectral grids. The MQ RBF method can
therefore be thought of as a generalization of the pseudospectral approach
that allows scattered points, in arbitrarily shaped domains, and that has a
shape parameter that can be optimized.

5.4 Connection to Wavelets

By performing a wavelet (or prewavelet) decomposition a complicated func-
tion can be separated into simpler parts that can be analyzed separately.
A wavelet decomposition of a square-integrable function, f(x) € L*(R) is
made at various levels of resolution by projecting it onto a nested sequence
of spaces, {V;}, j € Z, where

{0}...CV;.1 CV; C V... CLAR).
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Each subspace {V,41} can be decomposed into an approximation space {V;}
and its orthogonal complement detail space {WW;}, i.e.

Vi =V; © W

The name detail space comes from the fact that {IW;} provides the details
necessary to move from a coarser approximation space to a finer space. The
space L*(R) can be expanded as an approximation space plus a sum of detail
spaces as

Lz(R) = Vj=jo + Z W;
J=Jo
where jj is an arbitrary fixed level. The functions that generate the spaces
W; are called prewavelets. The prewavelets are called wavelets if they are
orthonormal bases of the W;’s.

The bases of approximation and detail subspaces are constructed with
scaled and translated versions of functions ¢;; and 1; as respectively

{V;} = span{¢;; =22¢(2'z — k)} (5.6)
{(W;} = span{e, = 272927z — k)} (5.7)

where j, k € Z. The embedding relations V; C V4, and W; C Vj4; induce
the following scaling and detail relations:

dx) = > mo(2x — k) (5.8)
Y(x) = ) grd(2w — k). (5.9)

k

The sequences are respectively low-pass and high-pass filters.
The wavelet decomposition of f(z) into f; € V; and ¢g; € W; is

f(x) = Z Y kPjok + Z Z¢j,k- (5.10)
k i=j0 &

A key ingredient of the wavelet decomposition is the existence of the fast
Discrete Wavelet Transform (DWT) [163] that provides a simple means of
transforming data from one level of resolution j to the next coarser level of
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resolution 7 — 1 using
Vi-1k = Zh%—e%’,z (5.11)
¢

Rj-1k = Zg%—mj,z- (5.12)
¢

The fast DWT avoids the tedious calculation of the coefficients, v and x, and
allows the wavelet coefficients to be efficiently calculated using fast numer-
ical convolutions followed by decimation. The scaling function coefficients
7,k represent a smoothed version of the function at the current scale, while
the wavelet coefficients k;, represent the irregular behavior (e.g. sharp gra-
dients) of the function, at a certain region between the current scale and the
next finest scale. The wavelet coefficients are therefore a measurement of
the approximation accuracy at the corresponding level of resolution. Good
approximations can be retained in smooth regions even though some detail
functions associated with the low level wavelet coefficients at the finer lev-
els are discarded. On the other hand, detailed local information can not be
neglected if local irregularities exist.

The basic idea of an adaptive wavelet scheme is to represent a function
with significantly fewer degrees of freedom, while still yielding a good ap-
proximation. At any level, the function under analysis is written as a sum

f@) = fi(x) + f(x)

where
fHz) = Z’on,kﬁf?jo,k + Z Z Kixlie for ki >m o (5.13)
k J=30 k
FPa) = D) mthin Kk < (5.14)
J=j0 k

For a sufficiently smooth function f(x), the compression error is bounded by
a prescribed threshold 7 as:

| f(z) = f1()| <O

where the parameter C' depends on f(x). The error indicator of the wavelet
based adaptive algorithm is simply obtained by resolving the wavelet co-
efficients k;j in the corresponding detail spaces. Sharp transitions can be
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captured by increasing the resolution in the regions with large values of the
wavelet coefficients k; .

The work in references [29], [17], and [18] shows that M(Q RBFs are
prewavelets. The use of the MQ in the prewavelet methods allows the schemes
to be extended to the case of non-equally spaced centers.

5.4.1 The Wavelet Optimized M(Q method

The construction of a compressed adaptive distribution based on the standard
wavelet scheme discussed in the previous section requires a solution at the
finest level of resolution. This may cause a substantial overhead in problems
with highly localized features, since these problems require a very fine distri-
bution for properly capturing localized features. It would be more efficient
to obtain a compressed solution by starting from a coarse distribution and
then refining the solution where it is deemed necessary. Such an algorithm
avoids the additional overhead of finding the solution on a non-adaptive fine
distribution. Examples of standard wavelet approximation schemes that use
local polynomial based finite difference methods can be found in reference
[115] and the references within.

In [110], the authors have developed a more efficient approach that starts
on a coarse distribution by using the MQ as the prewavelet. We refer to the
method as the Wavelet Optimized MQ (WOMQ) method. The method starts
on a coarse distribution of centers. Once the coarse solution is obtained, the
magnitude of the current level prewavelet coefficients are examined. A large
coefficient, x;j, indicates significant variation in the solution and suggests re-
fining the approximation by adding prewavelets at finer scales in this region.
The threshold parameter n plays an important role both in determining the
density of the resulting compressed center distribution and in the accuracy
of the solution. Smaller values of 1 will result in more accurate results be-
cause a denser distribution is produced in highly localized areas. Assuming
that the unknown dependent variables have been properly normalized by the
maximum value, a threshold parameter between 7 = 1072 and 107 typically
provides good results in applications. The main feature of the approach is
its fast data distribution generation and its ability to create a non-uniform
data distribution starting from an initial uniform coarse distribution. The
initial solution can be obtained in the coarse approximation space, and re-
fined by adding details over several levels until the equation is resolved to
the desired accuracy. The error indicator is efficiently obtained by the fast
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discrete wavelet transform algorithm.

In the higher n-dimensional case, the approach is analogous. The only
difference is that the n-dimensional wavelet transform consists of the sequen-
tial application of n 1D wavelet transform in each of the n directions. A 2D
implementation of the adaptive wavelet scheme is provided by the 2D DW'T
that leads to a decomposition of the coefficients at the j+1 level, 7,41 k¢, into
four components: a scaling coefficients at level j, v; ., and three wavelet co-
efficients, &, ;. in the horizontal, vertical and diagonal directions. One needs
to consider all horizontal, vertical and diagonal details. Each wavelet coef-
ficient indicates an important fluctuation in the corresponding direction. If
the wavelet coefficient is greater than the threshold parameter, then the cor-
responding nodes at finer scales in this region are inserted. This allows the
generation of anisotropic distributions that are a very important feature for
multidimensional general adaptation schemes, but are not included in several
standard adaptation strategies. More details may be found in reference [110].

N=144, level=1 N=328, level=2

Figure 5.2: Left: Initial coarse WOMQ centers. Right: WOMQ centers after
one level of detail has been added.

As an example we interpolate the function

o = a2 (o 2 1] o1

using the WOMQ scheme. The method is started with with a 12 x 12 grid of
uniformly spaced center location on the unit square. A threshold parameter
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Figure 5.3: Function (5.15) on the initial coarse grid distribution (left) and
on the WOMQ adaptive grid (right) after one level of detail has been added.

of n = 5e-3 is used to add a second level of detail. The new set of N = 328
centers is shown in the right image of figure 5.2. The centers and the function
interpolated to a fine uniform grid at each level are shown in figure 5.3.

5.5 Approximating Discontinuous Functions

0.51

-1 -0.5 0 0.5 1
X

Figure 5.4: The Gibbs phenomenon in the M(Q approximation of the discon-
tinuous function (5.16).



5.5. APPROXIMATING DISCONTINUOUS FUNCTIONS 97

For sufficiently smooth functions, MQ approximation methods are the-
oretically spectrally accurate (section 2.4). However, if the function being
approximated has jump discontinuities, spectral accuracy will be lost and
bounded oscillations will appear near the discontinuity as well as decreased
accuracy throughout the domain. The oscillations and loss of accuracy are
known as the Gibbs phenomenon. The Gibbs phenomenon was first observed
in the context of truncated Fourier expansions but the term has evolved to
characterize the nonphysical oscillations that appear in the approximation
of discontinuous function by all interpolation methods. Figure 5.4 illustrates
the Gibbs oscillations in the MQ approximation of the piecewise analytic
function

| sin(x) -1 <z <0,
f(@) = { cos(x) 0<z<I1. (5.16)

In the example, a shape parameter of € = 4.5 was used with N = 70 equally
spaced centers. The interpolant was evaluated at M = 200 equally spaced
evaluation points.

Recently, attempts have been made to characterize the Gibbs oscillations
in RBF expansions and methods have been suggested to mitigate the effects
of the Gibbs phenomenon. In [77], the authors examined the Gibbs phe-
nomenon in one-dimension and concluded that the Gibbs phenomenon in
RBF expansions has similarities to the Gibbs phenomenon in other expan-
sions. It was also noted that the Gibbs oscillations in RBF approximations
have some qualitative differences from the Gibbs oscillations in previously
studied approximation methods, especially in terms of how the oscillations
decay away from the jump. Previously, numerical experiments in reference
[1841] had revealed fundamental differences between the convergence rates of
global polynomial and global RBF approximation methods for problems with
jump discontinuities. While the presence of a discontinuity reduced the con-
vergence rate of global polynomial methods from a spectral to a first order
algebraic convergence rate throughout the domain, the M(Q method exhibited
a spectral convergence rate sufficiently far away from a discontinuity.

Following are some of the methods that have been developed to over-
come or lessen the effects of the Gibbs phenomenon in RBF approximation
methods.
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5.5.1 Variable Shape Parameter

In [I16], a variable shape parameter was used to lessen the effects of the
Gibbs phenomenon in the MQ expansion. Using form (1.1) of the MQ, the
shape parameter c is set to zero in regions around discontinuities. Thus,
at centers around discontinuities, the basis functions become the first order
accurate linear spline RBF ¢(r) = r. In numerical examples, the locally
adaptive MQ method was shown to be very effective in reducing the effects
of the Gibbs phenomenon. Figure 5.5 shows the results of applying the locally
adaptive MQ method (locallyAdaptiveMQ.m) to the function (5.16). The
parameters are the same as for the MQ method, except at five centers near
the discontinuity at x = 0 the linear RBF is used. In the left image of figure
5.5, the locally adaptive approximation is compared to the exact function.
In this example, the locally adaptive MQ method very sharply resolves the
discontinuity and the accuracy throughout the domain is impressive when
compared to the standard MQ method (right image of figure 5.5). The key
to the success of the locally adaptive M(Q method is the knowledge of the
exact location of all discontinuities. In general, locating all discontinuities
accurately is not easy. In [110], the MQ expansion coefficients « are used
as an indicator of smoothness. It is proposed that if a function is smooth
in a domain, then the maximum absolute value, max|o;|Y ,, occurs in the
neighborhood of boundaries and that otherwise the maximums exist in the
neighborhood of the discontinuities. In this way, the expansion coefficients
are used to determine in what regions the linear basis functions are used. For
example, the M(Q expansion coefficients « from the interpolation example in
figure 5.4 are plotted in figure 5.6. The largest expansion coefficients are those
corresponding to the basis functions that are centered near the discontinuity
at x = 0. The idea is further explored in [51] to develop a method for using
the MQ to locate jump discontinuities in a function.

5.5.2 Digital Total Variation Filtering

Instead of trying to prevent the Gibbs oscillations from occurring, a post-
processing method can be used to remove the oscillations and to restore
accuracy. The Digital Total Variation (DTV) post-processing method for
RBF's was developed was developed in [181]. The DTV method is applicable
with scattered center locations.

To describe the method, let = be a set of centers and denote general
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Figure 5.5: Left: Locally adaptive MQ approximation (blue) of function
(5.16) versus exact (red). Right: Point-wise absolute error, MQ (blue) and
locally adaptive MQ (green).

centers by «, 3, - - -. The notation a ~ [ indicates that « and [ are neighbors.
All the neighbors of a are denoted by

N, ={B€Z|B~al. (5.17)

The regularized location variation or strength function at any center « is
defined as
1/2

Vaul, = [Z (ug — uq)* + @’ (5.18)

BENa

The notation u, stands for the function value at center o. The variable u°
represents the approximation containing the Gibbs oscillations and A is the
user specified fitting parameter. The regularization parameter a is a small
value used to prevent a zero local variation and division by zero. The example
that follows uses a = 0.0001.

The DTV method (dtvFilter.m) postprocesses the solution by solving
a graph variational problem that minimizes a fitted TV energy. The unique
solution to this problem is the solution of a nonlinear restoration equation.
To evaluate the solution numerically, a preconditioned form of the restoration
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Figure 5.6: The magnitude of the expansion coefficients from the MQ exam-

ple in figure 5.4. The largest expansion coefficients correspond to the basis
functions centered near the discontinuity.

equation
du, |V qul 0
_ = a 1 a >\ Va a 519
o > (u uﬁ)( + \VBU\Q)JF IVaul, (ta — ug) (5.19)

Bra

is advanced to a steady state using time-marching with Euler’s method. Typ-
ically about 100 time steps are required to reach a steady state. An optimal
value of the fitting parameter is not known. However, a large range of val-
ues for the fitting parameter result in a “good” postprocessing. In general,
stronger oscillations are best handled with a small fitting parameter (< 10)
while weaker oscillations require a larger value of the fitting parameter. More
details on selecting the value of the shape parameter can be found in reference
[184].

In one-dimension, N, simply consists of the nearest neighbors of each
center. For two-dimensional scattered data, there are many ways to define
N,. One is to consider a p point neighborhood of a center « consisting of the
p centers that are closest to a. For arbitrary scattered data, the flaw in this
strategy is quickly exposed as it is possible for the points in the neighborhood
to be configured as in the left image of figure 5.7, with all its members on
one side of a. A more effective strategy is to divide the region surrounding
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Figure 5.7: Left: A neighborhood N, (filled circles) resulting from choosing
the eight closest points to a. Such a neighborhood can result in a poor
postprocessing due to points clustering on one side of a. Right: Eight point
neighborhood N,, of the point « (the square in the center) chosen by selecting
the closest point to a in each of eight regions. Filled circles are in N,, open
circles are not.

a center o in to p regions of equal angle and define N, to consist of the
point in each region that is closest to «. This strategy does not result in
the p closest points to «, but it does ensure that N, contains points in all
directions around «. Taking p = 8 typically produces good results. An
example neighborhood is shown in the right image of figure 5.7.

The results of applying the DTV filter to post-process the MQ approx-
imation (dtvFilterM@Q.m) from figure 5.4 are shown in figure 5.8. The
DTV method sharply resolves the discontinuity but the accuracy throughout
the domain is not nearly as impressive as that of the locally adaptive MQ
method. However, unlike the locally adaptive MQ method, the DTV method
does not need to know the locations of the discontinuities as it has built-in
edge detection. This could be an advantage and make the DTV method
more attractive in higher dimensions and with functions that have complex
features, for which locating all the discontinuities could be difficult.
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Figure 5.8: Left: DTV postprocessed solution of the oscillatory MQ approx-
imation from figure 5.4. Right: Point-wise errors. MQ (upper blue), DTV
postprocessed MQ (lower green).

5.5.3 Gegenbauer Post-Processing

The Gegenbauer Reconstruction Procedure (GRP) was developed to postpro-
cess polynomial based spectral and pseudospectral approximations of discon-
tinuous functions. Its development is chronicled in [90] and in the references
within. Reprojection methods take the spectral approximation and project
in onto another basis. In the new basis, spectral accuracy is recovered.

Recently, numerical examples were given in [26] to show that the GRP
is effective in removing Gibbs oscillations and in restoring accuracy in RBF
approximations of discontinuous functions. It is speculated, but yet proven,
that the GRP is able to restore spectral accuracy in the RBF approxima-
tions of discontinuous functions. The GRP does not depend on the struc-
tured spectral grids. The interpolant just needs to be evaluated at Gaussian
quadrature points. Thus, the GRP is easily applied to RBF approximations.
Pinpointing the exact location of discontinuities is crucial to the success of
the GRP. Methods for finding the locations of discontinuities in scattered
data are given in reference [51].

The GRP uses the Gegenbauer or Ultraspherical polynomials, C?, as the
reprojection basis. The Gegenbauer polynomials are calculated via the three
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term recurrence relationship

2(k 4+ M)§ k+2)—1

with C3 = 1 and C} = 2)\¢. Let £(z) be the map that takes z € [a,b] to
¢ € [—1,1] and let z(&) be the inverse of the map. In each smooth subinterval
i, the GRP postprocessed approximation is

Cin(8) = Cr(€)

fo(@) =) giCHE () (5.21)
=0
where the Gegenbauer expansion coefficients are
1 7t
9r = ol (1= ) 2CNEIn fla(€)]dE (5.22)
v )1
and
v 1 D+ 20T (A + 3)
Yo =72

ATNTN(n+ A

The integral in (5.22) is evaluated via Chebyshev-Gauss-Lobatto quadrature.
The Matlab code in listing 5.3 implements the GRP for 1d M(@Q approxima-
tions on the interval [—1,1]. The code is a simple modification of the GRP
for Fourier and Chebyshev pseudospectral methods from the Matlab post-
processing toolkit [186]. The gegenbauerPolynomial.m and im.m functions,
which are called by the grpRbf.m, are part of the freely available Matlab
postprocessing toolkit.

The result of post-processing the oscillatory M(Q interpolant from figure
5.4 with the GRP is shown in figure 5.9. The GRP parameters in each smooth
sub-interval were taken as m = A = 4. Notice that accuracy is restored even
at the point of discontinuity. The script that produces the example is in
listing 5.4.

5.6 Finite Difference Mode

Finite difference mode RBF methods are the generalization to scattered node
locations of the classical finite difference methods based on polynomial in-
terpolation . Finite difference mode RBFs methods were originally indepen-
dently investigated by Tjolstykh, et. al. [199, | and by Shu et. al. [195].
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function ug = grpRbf(S,L,m,ak,xr,xc,shape)
% gegenbauerPolynomial .m and im.m are part of the MPT
% http://www.scottsarra.org/mpt/mpt.html

M = length(xr); % evaluate the GRP approx at M points

sN = length(S); % number of discontinuities and endpoints
siN = sN - 1; % number of sub-intervals
Ng = 300; % number of quadrature points
j = 0:Ng; % Chebyshev -Gauss -Lobatto quadrature points
xj = -cos(j*pi/Nq)’;

gh = zeros (siN,max(m)+1); J Gegenbauer coefficients

ug = zeros (1,M); % reconstructed function at the reconstruction pts

% cocoooo fimel @Y EEEGTFIGIENER —co-osososoooosoCooCECCooosooooos

wt = pi.*ones (1,Nq+1)./Nq; % Chebyshev -Gauss-Lobbato quadrature weights
wt (1) = 0.5%wt(1);
wt(end) = 0.5*wt(end);

for i = 1:silN % u_N(C x[xi] )
sL = S(i); sR = S(i+1); mi = m(i); Li = L(i);

% RBF approx evaluated at mapped quadrature nodes
H = evaluationMatrixMQ (xc,im(sL,sR,xj,0) ,shape);
uC = Hx*ak;

for el=0:mi

hi = (gamma (Li)*(el+Li))/(sqrt (pi)*gegenbauerPolynomial (el,Li,1.0) *gamma (Li+0.5));
fq = uC.*((1.0-xj."2) . Li).*gegenbauerPolynomial (el,Li,xj);

gh(i,el+1) = hi*sum(fq.*wt’);

end % el
end %oi
% cocoooo FORENEEEIEE TUREEILEON —oosoooserooesororonoossCooossooooos
for i=1:M

for j=1:silN
if xr(i)>=s(j) & xr(i)< S(j+1)
sL = S(j); sR = S(j+1); mi = m(j); Li = L(j);

for el = 0:mi
ug(i) = ug(i) + gh(j,el+1)*gegenbauerPolynomial (el,Li,im(sL,sR,xr(i),1));
end

break 7% get out of the j loop, the interval has been found
end 7% if in interval
end 7 for j
end Y for i

i=M;
ug (M) =0;
sL = S(siN); sR = S(siN+1); mi = m(siN); Li = L(siN);
for el = O:mi
ug(i) = ug(i) + gh(j,el+1)*gegenbauerPolynomial (el,Li,im(sL,sR,xr(i),1));
end
ug = ug(:);

Listing 5.3: grpRbf.m
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N = 70; M = 200;
xc = linspace(-1,1,N)’;
x = linspace(-1,1,M)’;
h = @(x) sin(x).*(x<=0) + cos(x).*x(x>0);
f = h(xc);
fExact = h(x);

shape = 4.5;

B = systemMatrix (xc,shape);
H = evaluationMatrix (xc,x,shape);
lambda = B\f;
fApprox = H*lambda;
s = [-1 0 11; % endpoints and discontinuity locations
L = [4 4];
m = [4 4];

fg = grpRbf(S,L,m,lambda,x,xc,shape);

maxError = max (abs (fApprox - fExact))
maxErrorPP = max(abs(fg - fExact))

semilogy (x,abs (fApprox - fExact),’b’,x,abs(fg - fExact),’r’)
xlabel ’x’, ylabel ’|error|’

Listing 5.4: grpRbfDriver.m

Figure 5.9: Point-wise errors from M@ approximation of function (5.16).
MQ (upper blue), Gegenbauer postprocessed MQ (lower green).

Finite difference mode RBF methods are not exponentially accurate as the
global M@ method is, but the RBF finite difference method does exhibit alge-
braic convergence rates that are similar to polynomial based finite difference
methods on stencils of the same size.

The MQ method is a global method that uses information from all centers
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function neighbors = generateFdStencils (x,y,ns)
n = length(x);
neighbors = zeros (n,ns) ;

for i=1:n

x0 = x(i); yo = y(i);

r = sqrt ((x(:)-x0).72 + (y(:)-y0)."2);

[r,ix] = sort(r);

neighbors (i,1:ns) = ix(2:ns+1); % don’t include the i point
end % for i

Listing 5.5: generateFdStencils.m

in a computational domain to approximate a derivative at a single center.
In finite difference mode, local information from a subset of N, centers with
Ns; < N is used in the approximation. The MQ finite difference (MQ FD)
method associates with each center a vector of indices I containing the index
of the center and the indices of its N, supporting centers. The derivative of
f(x) at the j' center is approximated as

0

S (6) & i [ (1), (5.23)

The weights are the nonzero elements of row j of the differentiation matrix
D given by equation (2.25), which is now a sparse matrix. The weights are
found be restricting indices of ¢ and j to I in the formulas for the system
(2.5) matrix and 7 to the index of the center, and j to I in the formulas
for evaluation matrix (2.24). Finding the weights at all N centers requires
solving N linear systems of size (Ns + 1) x (Ns + 1).

Several methods have been suggested for selecting the subsets of sup-
porting centers. If the centers are “nicely” distributed, such as by the near
optimal algorithm (section 2.7), simply selecting the Ny closest centers works
well. However, if the centers are more randomly located, a better selection
criteria would be partition the region emanating from each center into slices
of equal angle Ny/(27) and then selecting the closest center in each slice.
This is the same strategy used for selecting the neighbors of a center in the
DTV postprocessing method in section 5.5.2.

The following methods can be used to select the shape parameter for use
in the MQ FD method. In references [194] and [195], the shape parameter is
normalized by the radius of local support of each center. Another strategy for
selecting the shape parameter at each center is motivated by the uncertainty
principle (section 2.5). When calculating wy, monitor the condition number
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of the system matrix. Then, if necessary, increase or decrease the shape pa-
rameter and recalculate w; until the condition number is within a range where
good accuracy should be expected, i.e., until £(B)nin < £(B) < &(B)maz-
Taking k(B)min = le+12 and K(B)min = le+15 has proven effective in nu-
merical experiments. These values have been used in the example that fol-
lows.

The diffusion problem that was solved by the MQ collocation method in
a two-dimensional, complexly shaped domain in section 3.2.5 is now solved
with the MQ FD method. Equation (3.24) is solved using the 635 centers in
the left image of figure 3.8. The script in listing 5.5 finds the finite difference
stencils based on the closest center criteria with Ny, = 11. Two typical
stencils are shown in figure 5.10. The weights for each stencil are calculated
with the Matlab code in listing 5.6 and are put into a differentiation matrix
that is returned in Matlab’s sparse matrix format. The shape parameters
are selected based on the condition number criteria discussed above and as
implement in lines 29 through 35 of the listing. The sparse structure of the
DM is illustrated in the left image of figure 5.11. The problem is advanced
in time in heatComplexDomainFdMode.m to t = 0.1 at which time
a maximum error of 5.4e-4 was recorded. The error using the global MQ
method was 3.8e-6.

Additional development of the RBF finite difference method can be found
in reference [191] where the authors combine the MQ finite difference method
with approximate Riemann solvers and flux limiters to get an upwind MQ
finite difference scheme for hyperbolic conservation laws with solutions fea-
turing shocks. In reference [212], scattered node compact finite difference
formulas based on RBF interpolation are developed.

5.7 Adaptive Center Locations

In problems that exhibit high degrees of localization, such as steep gradi-
ents, adaptive methods may be preferred over fixed grid methods. Since
RBF methods are completely meshfree, implementing adaptivity in terms of
refining and coarsening sets of centers is very straightforward compared to
methods that require a grid.

In recent years, a number of adaptive RBF schemes have been suggested
for use in both steady and time-dependent settings. In reference [25], B-spline
techniques were used with scaled MQs as an adaptive method for interpo-
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% INPUTS
% st indexes of the fd stencil points
% x grid
y
c initial shape parameter
minkK min condition number of the rbf matrix,
maxK max condition number of the rbf matrix,
dc shape parameter increment, e.g. 0.1
OUTPUTS
wt weights
dm differentiation matrix

le+12

e.g.
e.g. le+lb

ST 5SS 5T 5T 5E e e

function [dm,wt] = calculateFdStencilWeightsHeatComplex (st,x,y,c,minK,maxK,dc)

N
wt
dm

length(x);
zeros (N,length(st(1,:))); % weights
zeros (N,N);

for i=1:N
tn = st(i,find(st(i,:)));
pn = [tn il; % include the base point of the stencil

o
X
r

ones (1, length(x(pn)));
x(pn)*o - (x(pn)*0)’; ry = y(pn)*o - (y(pn)*o)’;
sqrt (rx.”2 + ry."2);

K = 1;
while (K<minK | K>maxK) % find a system matrix with desired K
B = mq(r,c); K = cond(B);
if K<minK
c = c¢c - dc;
elseif K>maxK
c = c + dc;
end
end

H = mgDerivatives ( sqrt ( (x(i)- x(pn))."2 + (y(i)-y(pn))."2 ),x(i)- x(pn),c,2) + ...
mqDerivatives ( sqrt ( (x(i)- x(pn))." 2 + (y(i)-y(pmn))."2 ),y(i)- y(pn),c,2);

wt(i,1:1length(pn)) = H’/B;
dm(i,pn) = wt(i,1:length(pn));

end 7 i

dm = sparse(dm);

Listing 5.6: calculateFdStencilWeightsHeat Complex

lation. Instead of using piecewise linear spline interpolants as in standard
B-spline techniques, the scaled MQs provided a better interpolant. In prob-
lems with a boundary layer in one space dimension, the authors in [107] pro-
posed an adaptive technique using the M(Q RBF which reallocated centers to
regions with sharp gradients. The work in [15, 16] combines an adaptive semi-
lagrangian method with local thin plate spline interpolation. The adaptive
method performed well on nonlinear time-dependent transport equations. In
[183], an equidistribution of arclength algorithm in space is used to adaptively
select center locations for time-dependent PDEs in one space dimension. The
paper [53] describes the adaptive method of residual subsampling. Residual
subsampling starts with non-overlapping boxes, each of which contain an ac-
tive center. Omnce a solution has been computed for the active center set,
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Figure 5.10: 12 point MQ finite difference stencils for problems (3.24). 11
red centers (stars) surround 1 green center at which point the derivative is
being approximated. Left: an interior stencil. Right: a stencil that includes
boundary centers.

the residual of the resulting approximation is sampled on a finer node set
in each box. Nodes from the finer set are added to or removed from the
set of centers based on the size of the residual of the PDE at those points.
The solution is then recomputed using the new active center set for a new
approximation. Residual subsampling has been applied to steady boundary
value problems in one and two dimensions and to time-dependent problems
in one dimension. For time-dependent problems a method of lines approach
can be taken, or the problem may be considered as a space time problem and
treated as a two dimensional problem with the distance function being taken
as r(x,t) = /(v —2;)>+ (t — t;)?. Matlab code that implements residual
subsampling can be found at [36]. Another adaptive method, the Wavelet
optimized MQ (WOMQ) method [110], is discussed in section 5.4.

The Burgers’ problem (3.21) with a small viscosity parameter develops
a sharp gradient in the solution. Next, the problem is used to illustrate
two of the adaptive center methods. Figure 5.12 shows center locations for
the adaptive equidistribution of arclength and residual subsampling meth-
ods for Burger’s equation (3.21) with viscosity parameter v = 0.000875 at
time ¢ = 0.2. Both methods were advanced in time using a method of lines
approach. Equidistribution used a fourth order Runge-Kutta method and

1.5
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Figure 5.11: The sparse MQ finite difference mode DM for problem (3.24).
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Figure 5.12: Adaptive MQ solution of problem (3.21) with N = 108. Left:
Equidistribution of arclength. Right: Residual subsampling.

residual subsampling used the Matlab function odelbs. The equidistribution
algorithm keeps the number of centers fixed and also prevents the ratio of
maximum to minimum center spacing from becoming too large. Residual
subsampling allows the number of centers to vary according to a tolerance
on the residual and allows centers to become widely scattered if necessary.
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Without any attempt to optimize the parameters of the methods, the maxi-
mum errors for this example were 0.0077 for equidistribution and 0.0209 for
residual subsampling.

5.8 Integrated Multiquadric Methods

The motivation for Integrated Radial Basis Function (IRBF) methods is the
fact that the order of convergence of an RBF derivative approximation is
reduced by the order of the differentiation involved [155]. Integrated RBF
methods integrate the original RBF with respect to r, one or more times, to
get new basis functions in hope of restoring or even improving the convergence
of the RBF methods. In [158], the authors apply the IRBF method with
good results in approximating functions. Subsequently, the IRBF method
was successfully used to solve differential equations [125, , , , ].
Recently some general properties and theoretical results have appeared in
[185).

The notation ¢"(r;¢) represent a RBF that has been integrated (n > 0)
or differentiated (n < 0) n times with respect to r. IRBFs are easily found
using a computer algebra system. For reference, the first four members of
the MQ integrated RBF family are:

erv/1 + 2r2 + sinh ™! (er)

1

_ 5.24

5 5 , (5.24)
, (=24 2r2)V/1 + €22 + 3ersinh ! (er)

2 - o | (5.25)
g VIRIICI3 4 4 3 s er) o
= 48e3 ’ .

g = V1 +e2r2(16 — 83¢%r% + 6e'r?) + 15er(—3 + 4e2r?) sinh ™ (er)
= 720€* ’

(5.27)

The integrated M(@Q basis functions are referred to as IMQ1, IMQ?2, ...to
indicate how many time they have been integrated.

For n even, the methods behave as those based on the parent MQ RBF.
That is, they are generally most accurate and most poorly conditioned for
small values of the shape parameter €. For n odd, the methods are most
accurate and most poorly conditioned for large €. A summary of properties
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n even n odd
k(B) as e — 0, N fixed 00 k(B) for ¢(r) =1
k(B) as € = oo, N fixed k(B) for ¢(r) = r"*! 00
1d interpolant as € — 0 ¢° = Lagrange interpolant o(r)y=r
interpolant as e = 0, d > 1 depends on ¢" o(r)y=r
large € interpolant o(r) = rtl o(r) = e2r™tt 4 pn=llogr

Table 5.4: Summary of IRBF properties.

is listed in table 5.4. As a result of the improved accuracy of the IRBF's over
their non-integrated counterparts, the condition number of the system and
evaluation matrices of the IRBF's will be larger as dictated by the uncertainty
principle. This indicates they will be most effective if employed with small
N (smaller than the non-integrated RBFs).

As an example, the IMQ7 method is applied (poissonExampleIMQ7.m)

to solve the Poisson problem that was solved by the MQ method in chap-
ter 3. The example uses the same set of N = 60 centers on the unit circle
shown in figure 3.1. In the left image of figure 5.13, the error over a range
of shape parameter is shown. For this example, the “optimal” value of the
shape parameter is close to ¢ = 10° at which point the condition number
(right image of figure 5.13) of the evaluation matrix is becoming critical.
With e & 350,000 the IMQ7 produces the smallest error of 6.5e-11 which is
several decimal places more accurate than the MQ method in chapter 3. In
this particular example of IMQ7 stationary approximation, with the number
of centers fixed at N = 60, a second order algebraic convergence rate is ob-
served as the shape parameter increases in the left image of figure 5.13 where
the graph of the maximum error versus the shape parameter is a line of slope
-2 on the loglog plot. This type of convergence is unlike polynomial based
methods that do not have a shape parameter to refine.

5.9 Boundary Collocation

In [69], a modified version of the asymmetric collocation method is described
for steady linear and nonlinear problems in one and two dimensions. The
modified version enforces both the PDE and the boundary conditions at the
boundary centers. The method is called the MQ PDECB method. In order
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Figure 5.13: Left: Maximum error versus the shape parameter for problem
(3.10) using the IMQ7 RBF. Right: Condition number of the evaluation
matrix, H, from problem (3.10) versus the shape parameter using the IMQ7
RBF.

for the resulting linear system remains square, an additional set of centers
are added adjacent to the boundary. The added centers can lie inside or
outside of the domain, but numerical experiments indicate that it is best to
place the additional centers outside the domain. The motivation for the MQ
PDECB method comes from the observation that the residual is typically
the largest near the boundary. The errors in boundary regions are often one
to two orders of magnitude larger than in the interior. The goal of boundary
collocation is to reduce the residual in boundary regions.

Let w represent the enlarged set of centers containing interior and bound-
ary centers and the additional Np centers outside the boundary. If the set
w¢ is ordered so that the N; interior centers are first, followed by the Np
boundary centers, and the additional Nz centers outside the domain added
last, then the MQ PDECB method can be described as follows. With the
additional centers, the MQ interpolant (2.29) becomes

N+Np

s(x) = Z ajgb(Hx—wﬁHz,g) (5.28)

Jj=1

and equation (3.3) and (3.4) from the standard collocation method are mod-
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ified as
N+Np
Lu(xf) = > aLe(|| x5 —w||,), i=1,...,(N;+ Np), (5.29)
j=1

at the N; interior centers, and as

N+Ng
Bu(x{) = > a;Bo(||x{ —w||,), i=Nr+1,....(N;+Np). (530)
j=1
at the N boundary centers. The structure of the linear system of the MQ
PDECB method is the same as that of the standard collocation method but
the MQ PDECB matrices are (N 4+ Ng) X (N + Np), rather than N x N.

In [69], numerical results are given that show a considerable improvement
in accuracy of the MQ PDECB method over the MQ collocation method.
However, in reference [129], the asymmetric collocation method, the sym-
metric collocation method, and the M(Q PDECB method are applied to a
battery of 2d Elliptic test problem and of the three methods, the MQ PDECB
method performed the poorest of the three methods.

To illustrate the MQ PDECB method, it is applied to the Poisson problem
(3.10) using the 60 centers in figure 3.1 that include 22 centers located on the
boundary. Figure 5.14 shows the locations of the 22 centers that are added
outside of the domain for the MQ PDECB method. The locations of the
centers outside the domain are not optimized in any way. In figure 5.15, the
accuracy of the MQ PDECB method and the standard collocation method
for the problem are shown over a range of shape parameters. With the MQ
PDECB method, the amount of work is larger due to the larger matrix size
and in this example its smallest maximum error maximum error is several
orders of magnitude larger than that of the standard collocation method. The
MQ PDECB method does have a smaller error over a large range of the shape
parameter, but in order to make an better comparison, the number of total
centers should be adjusted so that the same size matrices are worked with in
each method. The Matlab code that implements the MQ PDECB method
for this problem is in listing 5.7. This example and the conflicting results
([69],][129]) in the literature indicate that the effectiveness of the MQ PDECB
method versus the standard method may be problem problem dependent or
dependent in some way on the particular locations of the centers that are
added outside the domain. The NaK boundary treatment in section 2.8 may
be a more effective method to reduce boundary region errors.
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Figure 5.14: 22 additional centers (red *) added for boundary collocation to
the 60 centers (blue circles) in figure 3.1.
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Figure 5.15: Standard collocation method error (green dashed) and MQ
PDECB errors (solid blue) versus the shape parameters for problem (3.10)
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Nb = 22; % Dboundary centers/exterior centers

N = 60; % interior and boundary centers

Np = 82; % total number of centers: interior , exterior , and boundary
% the 22 boundary centers are in 1:22

shape=0.6;

centers = dlmread(’centersUnitCircle60BoundryCollocation.txt’,’ ’);

x = centers(:,1); y = centers(:,2);

u
£

65./(65 + (x - 0.2).72 + (y + 0.1)." 2); % exact solution
130./(65 + (x-0.2) .72 + (y+0.1) .72) .73.%(2.%x-0.4) .72 ...

260./(65 + (x-0.2) .72 + (y+0.1) .72) .72 + 130./(65 ...

(x-0.2) .72 + (y+0.1) .72) .~3.%(2.%y+0.2) ." 2;

+ 0onon

H = zeros (Np,Np); rx = zeros(Np,Np); ry = zeros(Np,Np); r = zeros (Np,Np);

f(1:Nb) = u(1:Nb); % Dirichlet Boundary conditions
for i=1:N
for j=1:Np
rx(i,j) = x(1) - x(j);
ry(i,j) = y(@i) - y(j);
r(i,j) = sqrt( rx(i,j)"2 + ry(i,j)"2 );
end
end

for i=1:Nb
for j=1:Np

rx(N+i,j) = x(i) - x(j);
ry(N+i,j) = y(i) - y(j);
r(N+i,j) = sqrt( rx(i,j) 2 + ry(i,j)"2 );
end
end

H(1:Nb,:) = mq(r(1:Nb,:),shape);

Hxx = mqDerivatives (r(Nb+1:Np,:),rx(Nb+1:Np,:) ,shape,2);
Hyy = mqDerivatives (r(Nb+1:Np,:) ,ry(Nb+1:Np,:),shape,2);
H(Nb+1:Np,:) = Hxx + Hyy;

alpha = H\f;
B = mq(r,shape);
uh = Bxalpha;
errror = norm(u(1:N)-uh(1:N),inf);

Listing 5.7: poissonBoundaryCollocation.m

5.10 Chapter Summary

In this chapter tools and techniques that can be used to augment the basic
MQ approximation method have been examined. The connections the MQ
method shares with polynomial and wavelet methods have been discussed as
well.

While few theoretical results exist for the M(Q method when using variable
shape parameters, it is well documented in applications that using a variable
shape parameter strategy often results in improved accuracy. When the MQ
method is used to approximate functions with discontinuities, the spectral
accuracy of the method is lost and Gibbs oscillations appear in the numerical
approximation. Postprocessing methods can be used to lessen the effects of or
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even remove the Gibbs oscillations, or a variable shape strategy can be used
to prevent the oscillations for occurring. As with all other global methods,
with large N the M(Q method can be very computationally expensive. Some
techniques to reduce the computational costs were listed in the previous
chapter. In this chapter the finite difference mode M(@Q method is introduced
which can reduce the computational costs of the global method and can
often be nearly as accurate as the global method. Functions featuring steep
gradients or detailed localized features are best approximated with adaptive
methods that select center locations based on features of the underlying
function. Integrated MQ basis functions can be used to potentially achieve
the same accuracy as their non-integrated counterparts but with smaller N.
Boundary collocation is a technique for PDE problems in which both the
PDE and the boundary conditions are collated on the boundary, rather than
just the boundary conditions. Boundary collocation can potentially result in
a more accurate solution.
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Chapter 6

Further Development of the
MQ method

The previous chapters have laid out the basics of the M(Q approximation
method for scattered data approximation and for the numerical solution of
PDEs. In this chapter, several recent, more advanced, applications and tech-
niques are described.

6.1 Simplifications of nonlinear time-dependent
equations

Many of the commonly used PDEs in engineering and science are nonlinear;
depending in which reference frame these governing are solved, some sim-
plifications can be obtained. PDEs can be represented either in the fixed
Eulerian frame, a moving frame in which points move at the fluid or elastic
solid displacement velocity (Lagrangian frame), or a frame moving with the
characteristic velocities. In finite difference, finite element, and finite volume
methods, upwind differencing is used in the Eulerian representation for nu-
merical stability; however, in the Lagrangian representation, no upwinding is
necessary. To use mesh-based schemes, the physics inherent in the PDEs are
modified in order to use these classical methods such as applying non-physical
mesh stiffeners and excessive viscosity; the calculations need to be stopped
to repair the meshing whenever the mesh has poor cell aspect ratios, exhibits
hourglassing, etc. The primary motivations for using the Lagrangian formu-
lation is that the artificial diffusion arising from upwind differencing in the

119
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Eulerian schemes is eliminated and material interfaces and/or contact sur-
faces move in time with the fluid velocity. However, shocks and rarefaction
fans are translated relative to the fluid velocity. In the Lagrangian repre-
sentation, the fluid flow can produce cells with very poor cell-aspect ratios,
or even negative volumes. In two or higher dimensions, one can question
whether a meshless solution method can permit simplifications and higher
accuracy.

Consider a subdomain, €2,, that is bounded by either a physical or dis-
continuous interface, the hypothesis that is to be tested is:

1. One can find a rotated, moving frame in which the dependent variables
are separable in space and time, where the spatial dependence arises
from the choice of basis function and the time dependence arises from
the expansion coefficients, x(t).

2. There exist local rotational and translational transformations that can
linearize the nonlinear Eulerian frame ideal gas Euler equations, and
within the MQ-RBF context, transforms the nonlinear PDEs into lin-
earized ordinary differential equations (ODEs) that have exact solu-
tions.

3. By solving a sufficiently dense set of simplified localized PDEs at sample
points, = € €),, a very good global approximation within 2, can be
obtained.

This hypothesis will shown to be valid on a 2D problem.

6.1.1 The 2d Euler equations

The hypothesis that was tested and validated is that one can find local rota-
tional and translation transformations upon the nonlinear fixed frame Euler
equations that simplifies the numerical solution procedure, provided the dis-
tribution of sampling data centers is sufficiently dense. In the fixed frame,
the strong conservative form of the Euler equations in 2D are:

oU  OF'  OF _
8t 825‘1 825‘2—

The vector of dependent variables, and fluxes are given in the follow order:

0 (6.1)
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U = [pa pu1>E>pu2]T
F' = [pu, (puf +p), wr(E + p), purus]” :
F? = [pus, pusus, us(E + p), (pu3 + p)|" (6.4)

and vy and us are the x; and x5 components of the fluid velocity, respectively.
The total energy density, F, ( Joules/m3), is related to the ideal gas pressure
by

p=-1) |- 50| (6.5)

The ideal gas has constant specific heat ratio, v, and the adiabatic sound
speed is a = \/vp/p-

Assume that with a physical subdomain, €2, that the dependent variables
and the flux components are discretized at N data centers, (1, xs,...,2xy) €
R? at some time t". These data centers represent a finite sampling of the
continuous dependent variable in any subdomain. The notation used here
is the subscript ¢ refers to a variable at the location, z;, i € [1, N]. The
superscript, k, refers to the k** dependent variable or its flux component,
and the superscript, n, or n + 1, refers to the dependent variables and flux
components at the time, t"* or "

6.1.2 Local transformations of the Euler equations

The idea of rotating the Euler equations is an extension of the previous
work of Levy, Powell, and VanLeer [131] and Kontinos [126]. These authors
showed that one cannot simultaneously diagonalize all of the conservation
equations because the momenta components are not scalars. However, three
of the complete set of 2D Euler equations can be made to appear as local
one-dimensional PDEs, see Kansa [120]. In three dimensions, one can per-
form either two consecutive rotations into the local principle momentum, or
perform a 3D rotation in terms of the Euler angles.

At an interior point z; rotate the momentum (fluid velocity) components
by an angle, 6; = tan™'(ug;/u ;) and rotate the local coordinate system cen-
tered at x; by 6; to form {x}, 2, }. Then, the local mass, principal momentum,
and total energy conservation equations appear to be locally one-dimensional
when one of the transformed coordinate axis, 2/, is aligned with the principal
momentum, so pu, = 0 along the coordinate, . In this system:
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g =0 (6:6)
6‘(?;’1) N 5’(/)%1;’1,1 +tp) _ (6.7)
%—f + —a[ui(gi,f ol _ (6.8)
The local angular momentum equation
m{%Jru’lggﬂ +§i =0 (6.9)

is strictly two-dimensional. In three dimensions, the rotations into the princi-
pal momentum direction produces three 1D PDEs (mass, principal momen-
tum, and total energy density equations) and two 2D angular momentum
density equations.

6.1.3 Local translations upon the rotated Euler equa-
tions

In the local rotated coordinate system, {z, x5}, the conservation of mass,
principal momentum, and total energy densities at each x| are 1D. Einstein
asserted that all the laws of physics are equally valid in all inertial frames,
whether the frame be fixed or moving at a constant velocity. In numerical
simulations, one assumes that within a time step, At, a snapshot of the
physics is taken in a sufficiently small time interval so that the motions are
approximately constant.

The physics of the strong form of the Euler equations (6.1) are unchanged
if they are written as:

ou ou ou OF! ou OF? ou

— + M=+ A - A - A =0. 1

ot Mo T T {8x’1 lax;] [8x’2 28%} 0. (6.10)
A very convenient set of velocities to use is found by choosing (A1, Ay) such
that both quantities within the square brackets vanish:

OF! ou
el W
or} or}
or*  ou 0

/ 297
oxl, oxl,
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A similar process can be performed in 3D or 4D. One can relate the fixed
frame conservation equations to a Galilean or Lorentz transformation in
which the data centers are permitted to move at constant “characteristic”
velocities. Then the total time derivative operator is:

d 0
= EJFA’“-V’ (6.11)

and we have

dU  oU oUu ou
e E—i—)qa—xl—l—)\za—xz =0. (6.12)

It is important to note that a transformation that transforms a nonlinear
PDE into a linear PDE is valid at a local point, (2}, }), but not globally
within the subdomain, §2,. However, it is hypothesized that if there exists
a “sufficiently” dense set of sample points within €, these local simplifying
transformations can accurately define the numerical solution over a subdo-
main, 2,. The validity of this hypothesis will be demonstrated later. Linear
combinations of these 1D PDEs can be combined to obtain the compatibility
equations. In the local rotated and translated reference frame, the compati-
bility equations are ordinary differential equations along

k
% = (elXIf + 92)\§>

where \¥ = (v} — a,u},u} +a) and \§ = 0 for k = 1,2,3. See Kansa, Power,
Fasshauer and Ling [125] for more details.

In compact notation, each compatibility equation in the local rotated,

translated frame can be written as exact differentials:
/
% = W% =0, along Cil_xt =\ overQ,\00, (6.13)
where W is a matrix relating the values of U to the values of Q.

In summary, in 2 or 3D, it is possible to find local rotations for the
Euler PDEs, that diagonalizes the principal momentum, mass, and total
energy equation, but not the angular momentum equations. In addition,
by finding a local translational frame in which the rotated PDEs appear
to be exact linear differentials, the solution procedure is simplified. Note
that the nonlinear PDEs are linearized locally and the nonlinearities are
placed in the “characteristic” velocities. Rather then solving the difficult
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nonlinear Euler PDEs in the fixed frame, these local linearized transformed
compatibility equations will be solved. The validity of this approach with the
MQ RBF method has been successfully applied in Kansa [121] and Kansa,
Aldredge, and Ling [122]. The construction of the interpolation and flux
matrices in the rotated, translated frame are given in detail in Kansa [120),

|. The boundary conditions for sub-sonic or super-sonic inflow and outflow
are discussed in detail by Laney [127].

6.2 Exact Time Integration of the Exact Dif-
ferentials

The starting point of the time integration process is interpolation. Given the
initial conditions in which the mass, momentum, and total energy densities
{U*} are specified at time ¢ = 0, the initial values of the expansion coefficient
{x* (t = 0)} are calculated that correspond to U*(x,0) with x € €.

Since mass, momentum components, and total energy are extensive quan-
tities, the mass, momentum component, and total energy densities must be
integrated over the subdomain, {2,. Because it is not possible to find closed
form integrals for irregular boundaries, a combination of analytic integration
and Gauss-Legendre numerical integration schemes, as in Kansa, Aldredge

and Ling [122] are employed. Matrices in each €, for the interpolation and
fluxes in the rotated moving frame are
Ci Cy XIC QI'C
L= [ 6.14
[ Cuvi Cu ] [ XE Q} (6.14)
where x* = [x¥, x%]" and Q" = [QF, QF]”. The subscripts i refer to the

interior, and b refer to the boundary. At any time ¢ a point x} is advanced
by the principal fluid velocity, u, = m/p;, to a position

xl(-"H)' =’ + Atul.

(n+1)r

)

Then, at x
tions

, using the characteristic velocities, the loci of the intersec-

Xjp = x§“+1” — ALXF

are formed.
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The components of the C matrix are explicitly functions of space. For
simplicity, denote

, 0C , 0C

Ve =g Ty
formed by taking the appropriate zj and xf, partial derivatives of the ba-
sis functions. In the initial value problem, all the expansion coefficients
{X* (t = 0)}, in Q, are found by specifying the initial values of U7 (z,t = 0),
and the conservation constraint. It is simple to construct such matrices eval-
uated at the set {xj;}. Once the set of initial expansion coefficients are
known, then a compatibility variable, QF, can be reconstructed over Q, as

Q¥ (x,t) = C(x)x*(t), for all discrete x € €, andallt > 0.

The compatibility PDEs, now in ODE form, have the general structure:

k
C(x)%+[>\-VC(:c)]Xk(t) = fF. oover Q,\0Q,

BC(z)x*(t) = ff on 09,

It is assumed that the primary time dependency with RBFs arises from
the expansion coefficients, x*(t); if data centers move in time, then the spa-
tial dependency is implicit in time. The loci of the boundary characteristics
depend upon whether the flow direction is positive or negative, and sub-or
super-sonic, see Laney [127]. For the incoming or outgoing characteristic,
one usually specifies a U’ (Xpouna, t) and rewrites the appropriate compatibil-
ity equation for the other components, U*#7, along the appropriate charac-
teristics. Consistent boundary conditions can be determined from the loci of
the incoming or outgoing “characteristics”. Between time steps, consistent
boundary conditions require the incoming or outgoing “characteristics” to lie
within, not outside of the domain 2.

The conservation constraint for area, mass, momentum components, and
total energy is built-in the setup. Define a new matrix, A, to be a matrix
over €1, that consists of both the interpolation terms and the flux terms over
0,\09), and on 0f), written as:

A =C(\.vC).

The exact solution of the system of ODEs for x* includes the homogeneous
and particular solution:

V480 = (Dexpm |- /fAtA(T)dT]
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t+At
+ expm(—At)/ expm(AT)f*(7)dr.
t

The expression expm is the built-in Matlab routine that calculates the ex-
ponential matrix. The method is stable if the amplification matrix

expm |- [ twA(T)dT}

is such that its maximum eigenvalue < 1. Several factors were observed that
are required for stability: (1) Well-posed boundary conditions and (2) The
C matrix must be well-conditioned. Stability can be achieved for larger val-
ues of At if a two-or-three point Gauss-Legendre integration scheme is used,
rather than assuming the matrix A is constant within a prescribed At. In
contrast to the finite difference time-marching scheme, the CFL condition
does not necessarily guarantee that the maximum eigenvalue < 1. If C is
poorly conditioned, then the amplification matrix can yield maximum eigen-
values > 1 for all At < Atcpr. In general, it appears that the theoretical
conditions for stability are more complicated than the simple CFL rule.

As with traditional Lagrangian schemes, the data centers will move within
a subdomain, perhaps leaving some subregions very sparsely represented, and
congregating in other regions. Wave breaking can be detected by monitoring
the characteristic velocities, {\K}; if all these velocities have the same sign,
then there is no wave steepening. If some velocities have opposite signs, then
there will be a time at which data centers will coalesce, and a discontinuous
curve can be inserted, forming two or more subdomains. However, whenever
data centers are added, deleted, or rearranged, the interpolation process onto
a more favorable distribution must be performed in a strictly conservative
manner, so that the extensive quantities of mass, momentum components,
and total energy are strictly conserved before and after interpolation. This
conservation is strictly guaranteed because conservation constraints are built
into the formation of both the interpolation and flux matrices.

6.3 The MQ and the Level Set Method

The level set method is a numerical technique for capturing interfaces whose
topology evolves in time on a fixed grid in R¢. The interface located at z*
is the locus at which the level set function G(z,t) is such that G(z*,t) = 0.
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The propagation of the level sets are governed by the following hyperbolic
PDE
Gi+v(z,t)- | VG| =0. (6.15)

The numerical solution of the level set equation requires sophisticated
techniques. Simple finite difference methods fail quickly without upwinding.
The level set method does not guarantee the conservation of the volume and
the shape of the level set in an advection field that does conserve the shape
and size in a uniform or rotational velocity field. Instead, the shape of the
level set may get severely distorted and the level set may vanish over several
time steps. For this reason, high-order finite difference schemes are generally
required, such as high-order essentially non-oscillatory (ENO) schemes, and
even then, the feasibility of long-time simulations is questionable. Level set
and volume-of-fluid methods handle the topology changes due to non-smooth
velocity fields at the interface by introducing viscosity to the hyperbolic equa-
tions. Sethian and Smeraka [193] warn one should avoid re-initialization too
often since it introduces errors in the position of the front, x*. The signed
distance function helps minimize loss of conservation of mass. Further so-
phisticated methods to deal with this difficulty have been developed, e.g.,
combinations of the level set method with tracing marker particles advected
by the velocity field.

Kansa, Aldredge and Ling [122] attempted to simulate the previous 2D
combustion calculations of Aldredge [1] with 2D counter-rotating vortices in
an infinitely periodic domain with MQ-RBFs and the level set method to
determine whether the higher convergence rates reported with RBFs could
reduce the CPU time from 14 hours using the upwinded finite difference
method. The governing equation can be written as:

(pG), +V - [u —nS,0(xs)pG] =0 (6.16)
where the u and v components of the vortical flow are:
u(x,y) = 2A cos(2mx) sin(27y)

and
v(x,y) = 2Asin(27x) cos(2my).

A is the root-mean-square intensity of either component of velocity fluctua-
tion, p is the burned or unburned gas density, S, is the local normal rate of
propagation of the flame into the reactants. The vector n is the normal unit
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vector from the flame front x; and 0(z) is a delta function that is one at
x = xy and zero elsewhere.

By combining the level set method with the MQ method, it soon became
apparent that the level set method not only required a considerable amount
of nonphysical viscosity but required re-initialization too often for stability.
This requirement was contrary to what Sethian and Smeraka [193] warned.

It was argued in Kansa, Aldredge, and Ling [122] that since the levels
near zero wanted to coalesce naturally, then the zero level should be a dis-
continuous function represented as a product of a Heaviside function in the
normal propagation direction and a piecewise continuous function in the tan-
gential direction that is approximated by a periodic MQ function having the

following form:
—2)2\1°
i(z) = [1+sin2 (%)} . (6.17)
J

Define the flame front position in terms of the unit normal and tangential
unit vectors,

Ty = e + Key.

Then the normal and tangential positions at the front are related implicitly:

F=&=Y% ¢r)y=0.

By finding the partial derivatives, F and F}, one can readily find the rota-
tional angles to construct the normal and tangential unit vectors that relate
xy = (x},2%) to (& ). Then the level at the flame front is governed by:

(pQ), + V - [u—nS,0(xs)pG] = 0. (6.18)

The normal velocity component of the front is determined by the Rankine-
Hugoniot jump conditions at the discontinuity. The tangential velocity com-
ponent is determined by the angle of rotation.

The gas density in the burned zone (or subdomain) is different from the
gas density in the unburned zone. The natural way to model this problem is
to define two subdomains, €2, (burned gas) and €2, (unburned gas). Because
the reactant speed S, is a delta function, the governing equation becomes

(pG), +V - [upG] =0 (6.19)
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in either €2, or €2, where u is the vortical flow. The dependent variable is pG
that is approximated by MQ-RBF's as

pG(z,t)F = Y ¢(x)ak(t).

The superscript k is either burned or unburned. The data centers in the
burned or unburned regions move in time. At each interior point, local ro-
tational and translational transformations (section 6.1) are applied so the
PDE is converted to a local exact differential, and the exact time integration
(section 6.2) method is used to find the advanced time solution. To prevent
interior points from moving too far, leaving holes, etc., a strictly conser-
vative interpolation scheme is enforced in both the burned and unburned
subdomains.

The flame front motion is influenced by both the burning speed, S,
and the u and v components of the vortical flow. The flame front flattens,
then distorts. At time ¢ = 0, the flame front was a vertical line centered
at © = 0. Because of this motion, and the properties of M(Q, the modified
Greedy Algorithm (section 4.7) was used. The set of evaluation and data
centers with various M(@Q shape parameters were used in an over-determined
systems. The trial set of shape parameters are:

{c/2°¢/2",.. . c/2"}.

At various time steps, the Greedy Algorithm chooses the data centers, eval-
uation points, and shape parameters for the front itself, and the burned and
unburned subdomains. The chosen shape parameters change in time. The
center locations and the position of the flame front at time ¢t = 0.091058 are
shown in figure 6.1.

The benefits of modeling the flame front as a product of a Heaviside
function in the normal propagation direction and a piece-wise continuous
function are numerous:

1. Without a mesh, front tracking is very simple to implement

2. There is no need to construct a conformal grid needed for a front with
possibly very small cell sizes

3. There is no need to change the physics by introducing nonphysical
numerical viscosity or large surface tension
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Figure 6.1: Flame front at ¢ = 0.091058 with internal center locations and
velocity vectors.

4. There is no need to re-initialize to prevent levels from coalescing
5. There are no very small cell sizes or other complications.

The original finite difference level set method required over 14 hours on a
main frame computer to execute. The simplified front tracking scheme using
the MQ required only 120 seconds on a desktop computer using un-optimized
Matlab code. The results were in excellent agreement with prior calculations
of Aldredge [!]. Additional details of simulation can be found in [122].



Chapter 7

New Frontiers: High
dimensional PDEs

This chapter is distinct from previous chapters because higher dimensional
PDESs, whether with mesh-based methods or meshless radial basis functions,
is basically unchartered territory. The chapter will present some representa-
tive high-dimensional PDE problems, survey what has been done with mesh-
based and stochastic methods, and present suggestions that might make such
challenging problems workable.

7.1 Physically important problems not ad-
dressed by current methods

There are many important applications in biology, finance markets, chem-
istry and physics that involve PDEs in higher dimensions. Examples of high
dimensional partial differential equations in R¢ are:

1. General relativity and black hole formation.
2. Dirac relativistic quantum mechanics.

3. The 6 dimensional Boltzmann’s equation in which the independent
variables are the three spatial dimensions and the three components
of velocity.

4. The Fokker-Planck equation that describes the evolution of the proba-
bility density function.
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5. The d-different substances in molecular biology that influence a cell’s
chemical balance.

6. The ab initio quantum mechanical molecular calculations in which each
atom of a molecular containing M atoms has 3M degrees of freedom.

7. The d-dimensional Black-Scholes price options of d-stocks or other com-
modities.

Presently, there are a few papers using RBFs dealing with the Black-
Scholes equations, see [111], [70], and [171].

Even with the newly developing supercomputers, both computer memory
and execution time become severe limiting factors in solving such multi-
dimensional PDEs. One must be aware that mesh generation over irregular
3D domains alone is a very time-consuming task. In higher dimensions, mesh
construction, defining the connectivity relations, differentiation, integration,
etc. may not be even practical beyond three dimensions.

7.2 Curse of dimensionality

Bellman [17] discussed the curse of dimensionality to describe the compu-
tational problem of dealing with higher dimensions on tensor product grids.
Assume the computational domain 2 € R¢ is a unit hypercube in d dimen-
sions, and along each coordinate, there is a uniform discretization, h; the
number of grids is N ~ O (h‘d). Problems with practical applications are
not readily treated on a unit hypercube.

There are three current widespread practices that are used to solve multi-
dimensional PDEs: Operator (Dimensional) splitting, Adaptive Sparse Grid
(ASG) methods, and Monte Carlo (MC) and the quasi Monte Carlo (QMC).
Each method has its limitations in high dimensions.

7.3 Operator Splitting

There are several operator (dimensional) splitting methods in use, see [57].
They conclude that these splitting schemes are either not accurate enough or
not parallelizable on operator level or only parallelizable at a high cost. They
demonstrated that iterative splitting schemes perform well if the advection is
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parallel to a grid direction, but fails to converge when the flow is skew to the
grid directions. Reference [172] examined the errors introduced by operator
splitting techniques in air quality models, and in general, the results are only
first order accurate. Symmetric and non-symmetric operator splitting does
not provide significant difference in accuracy.

7.4 Multigrid and Adaptive Sparse Grid meth-
ods

For higher dimensions there is an additional disadvantage of regular refine-
ment in each direction, because the number of the degrees of freedom in-
creases very fast when more levels of refinement are introduced. In [38], the
authors studied numerical integration in high dimensions and showed that in
many multi-dimensional problems, not all dimensions are equally important,
and the overhead involved in determining and refining the important dimen-
sions is considerably large. They developed a dimension—adaptive algorithm
that tries to find the important dimensions automatically and places more
points in those dimensions. The number of indices in the index sets can
become very large for difficult high-dimensional problems.

7.5 Monte Carlo and Quasi-Monte Carlo meth-
ods

Monte Carlo or pseudo-random methods suffer from one severe shortcom-
ing: they converge inversely proportional to the square root of the number
of particles. The quasi- Monte Carlo (QMC) method achieves faster con-
vergence by sampling from carefully chosen deterministic points; hence it
is quasi-random. However, [173] showed the lack of randomness in quasi-
Monte Carlo methods is a distinct disadvantage, since it causes aliasing and
precludes error estimation. One remedy is adaptive sampling; one takes more
samples where the integrand has the most variation. The main disadvantage
of adaptive sampling is that it can introduce bias. Other problems with
adaptive sampling is that it is not very effective for high dimensional prob-
lems and this method requires that a substantial number of samples must
be taken, in order to estimate the covariance matrix with any reasonable
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accuracy. Lastly, there are too many possible dimensions to refine.

The authors in [19] discussed QMC and found surprising results. QMC
can be inferred that quasi-random sequences may exhibit cyclic behavior. For
example, it might be an efficient method for dimensions 1 to 60, then diverge
significantly from the theoretical result between dimensions 80 to 200 and at
last converge again. Reference [37] discussed stochastic methods and sparse
grid methods. However, the statistical approach becomes quickly intractable
for complex problems in multiple random dimensions. The reason is the num-
ber of realizations required to acquire good statistics is usually quite large. In
the standard sparse grid collocation approach, all the dimensions are treated
equally. In many problems usually encountered, not all the dimensions are
equally important. That is, the solution varies much more smoothly in some
particular dimension than in others. This brings up the possibility of re-
duction in the computational effort required to solve the stochastic problem
by weighting the number of sampling points in the stochastic dimensions
according to the solution smoothness in that dimension. But it is not pos-
sible to know a priori which dimensions are more important. An obvious
disadvantage of this strategy is that the number of points required increases
combinatorially as the number of stochastic dimensions is increased.

7.6 Role of the MQ in high dimensional prob-
lems

MQ RBFs are very well suited to solve high dimensional PDEs on irregular
domains because only the radial distance between any pair of points in R?
are required. A very irregular domain in R? is first discretized by discretiz-
ing the boundary surface, then inserting interior points interior. However,
both the curse of dimensionality and ll-conditioning are persistent problems
that must be addressed. Some recommendations are presented address both
issues, since they are inter-related. Because of the large number of discretiza-
tion points possible in high dimensional PDE solutions, hybrid combinations
of various reduction methods along with more complex programming require-
ments is a fact of life because computers will infinite memory and precision
executing instantly will not be available.



7.7. REDUCTION OF DISCRETIZATION POINTS 135

7.7 Reduction of discretization points by trans-
formations to different variables or on the
dependent variables

The usual approach used by many authors in solving PDEs with RBF's is to
cover the domain with a very fine discretization; such an approach is very
simple to implement, but increases both CPU time and ill-conditioning. For
problems in three dimensions or higher, this simple approach is not practical.
The objective in solving higher dimensional problems is to obtain the best
accuracy with the least amount of CPU time. One should use discretization
points sparingly, to avoid the curse of dimensionality problem. There are
several methods used both with RBF methods and other approaches that
should be examined before blindly rushing into attempting to solve higher
dimensional problems with billions of points. Some of these methods are
presented below.

7.8 'Test for the effective problem dimension-

ality
References [37, 88, , 19] discussed methods to determine the effective di-
mensionality of high dimensional problems in mesh-based and Quasi-Monte
Carlo methods. Likewise, [389] introduced a functional minimization approach

to determine the important independent variables, and any possible degener-
acy. He allowed the data centers and expansion coefficients to be unknowns,
and minimized a functional containing a transformation matrix, W, of the
independent variables. The eigenvalues of W provides information about the
computationally relevant independent variables, thus possibly reducing the
effective dimensionality of the problem.

7.9 Transformations on the independent vari-
ables

Often, waves exhibit a wide range of wavelength scales; a bare minimum of
two discretization points are needed for a wave in each direction. For very
short wavelength problems, one can work in a transformed frequency space
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where the frequencies are inversely proportional to wavelengths by using
Fourier transforms. The inverse Fourier transform can be applied to return
to regular space. Other commonly used transforms that may have compu-
tational advantages are the Laplace and Mellin transforms as well as those
based upon the various kinds of Bessel functions such as the Hankel, Meijer,
Kontorovich-Lebedev, and Y transforms, see [1758]. Such transformations can
only transform linear PDEs. Many problems of importance to biophysics, en-
gineering, financial markets, and physics are nonlinear. In order to linearize
such PDEs and work in transformed space to reduce the discretization prob-
lem in R?, various methods have been published to linearize nonlinear PDEs
(NPDEs). Various authors, such as in [23], [51], [5], and [197] constructed
invertible mappings from a system of NPDEs to a linear system of PDEs
(LPDEs). The method is based on the existence of an infinite-parameter Lie
group of transformations admitted by the nonlinear system. If such a group
exists and certain criteria are satisfied , then using the infinite-dimensional
symmetry, a transformation may be constructed to link the system of NPDEs
to a system of LPDEs. These canonical variables are related to the commut-
ing operators, and represent the linearizing variables. In [55], the author
showed that two conditions play an important role: (1) The nonlinearity can
be expanded in the same basis functions as the linear part. (2) The linearized
parts of the NPDEs have nontrivial solutions.

7.10 Dependent Variable Transformations

An example of flattening rapidly varying functions can be found in the trans-
formations of the time dependent Schrordinger equation for molecular reac-
tions given by:

H(rt) [ W
o = |2V tVED| e, (7.1)

where A is the Planck constant, p is the reduced mass, and V(r,t) is the
electrostatic potential that includes the nuclear attraction of the electrons
and the electrostatic repulsion potentials of the nuclei with each other and the
electronic repulsion energies. Because molecular quantum mechanics involve
3N spatial dimensions, where N is the number of atoms in a molecule, it
is important to reduce the number of discretization points. Quantum fluid
dynamics (QFD), see [112], replaces the rapidly varying wavefunction, 1 (r, t)

ih
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by a slowly varying quantum density and phase space terms:

W(r,t) = exp(iS(r,t)/h)\/p(r,t) (7.2)

where p is the slowly varying density, and S is phase in configuration space.
Define the quantum fluid velocity as:

v(r,t) =VS(r,t)/ . (7.3)

Then the electronic Schrordinger equation is written in two parts:

dp _
E +V- (pv) =0, (74)
and 5
1 <§ +v- V'U) = -V [V(’f’, t) + ‘/;(Ta t)] ’ (75)
where

Vilrt) = =5 (VA (7.6)

The resulting time dependent QFD equations were solved in the La-
grangian mode using the velocity, v that move the centers to regions of
higher gradients [I12]. In [175], QFD was used to investigate the propa-
gation of wave packets using adaptive grids and moving boundaries. They
found a significant reduction in the number of data centers required to obtain
accurate calculations by allowing points and boundaries to move as compared
to the Eulerian formulation.

7.11 Translations to a moving node frame

Reference [198] studied cyclone development in tropical waters and used
nested moving high resolution grids moving over fixed larger scale grids.
With substantial grid motion , the characteristics show a clear asymmetric
pattern for cyclone development that had not been seen for fixed grids pre-
viously. For hurricane Lili in the Gulf of Mexico, the moving grid approach
reduced the number of model grid points by a factor of 6.8, and the model
run time by a factor of 4, compared to a conventional fixed grid model. For
applications in larger basins, these ratios are expected to favor the moving
grid model even more.



138 CHAPTER 7. NEW FRONTIERS: HIGH DIMENSIONAL PDES

In [121] and [122] rotational and translational transformations were used
on the PDEs and obtained very high accuracy with a coarse discretization.
The physics of the problem moved nodes to regions of steeper gradients
more rapidly than the shallower gradients, and effectively provide an auto-
matic form of node refinement. Although there is more complex program-
ming required, there can be a substantial payoff in reducing the number of
discretization points.

7.12 Solution Space Enrichment containing
both continuous and discontinuous RBF's

One must distinguish between very steep, but continuous structures and a
true discontinuous structure. The time-honored way of approximating shocks
by rapidly varying continuous functions over a thin region becomes imprac-
tical in high dimensional space. Nonlinear hyperbolic PDEs can produce
infinitesimally thin shocks and contact surfaces; whereas parabolic PDEs
with small dissipative parameters such as viscosity, thermal conductivity,
and diffusivity produce very thin regions of finite width. In certain physi-
cal situations, the physical parameters are sufficiently small producing very
thin-regions that are to a very good approximations negligibly small.

At 1 atm pressure (1.0133-10° Pa) and a temperature of 293 K, the shock
thickness at Mach 1 is approximately 5.6-10%m; at Mach 2, 3-10~%m, at
Mach 2, at Mach 3 2.6:107% m, etc. In solids, the shock thickness 5-10
nm.. At 213K, the kinematic viscosity of air = 8.79267-107% m?/s, the ther-
mal diffusivity = 1.22-107° m?/s; at 293 K, the kinematic viscosity of air =
1.5497-107° m?/s, and the thermal diffusivity = 2.3-107> m?/s. To properly
model a shock in the fixed Eulerian frame, one requires mesh cell sizes of
1 nm for solids and at least 7 nm along each coordinate for solids and air,
respectively. For supersonic jet whose dimensions are order of meters to tens
of meters, this is impossible on even present-day supercomputers; on the
scale of such an aircraft, a shock is infinitesimally thin. The long-standing
approach has been to invoke artificial viscosity to smear shocks over several
mesh cells; the physics is necessarily modified to accommodate the numerical
schemes.

Since many problems admit solutions with continuous and discontinuous
features, the solution space needs to contain both continuous and discontinu-
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ous functions. Found in [50], [18], and [58] are a few of the early authors who
introduced the extended finite element in which the solution space contained
both continuous elements and special discontinuous elements for cracks. In
[215] a new RBF approximation was developed in which discontinuous RBFs
for cracks. In this method, a jump function that accounts for the displace-
ment discontinuity along the crack faces is added on nodes whose supports
are cut by the discontinuity and a branch function accounting for the near-
tip crack fields is added on those nodes whose supports are partially cut by
the discontinuity. In addition, a special function derivative is discontinuous
through the line of discontinuity (material interface for instance) is added
into the approximation space.

In [2], the method of fundamental solutions (MFS) was used to solve
crack problems. In their work, they use a functional space based on shifted
fundamental solutions of the PDE to account for the regular behavior of
the solution far away from the crack, and enriched that functional space by
adding singular particular solutions that capture the behavior in the vicinity
of the cracks. In [20], the solution space was enriched to account for bound-
ary singularities that arise when there is an abrupt change in the boundary
conditions (along a smooth boundary) or if there are re-entrant corners. The
usual approach to try to overcome these difficulties is to use grid refinement
in the vicinity of the singularity. However, adaptive grid refinement schemes
cause a significant increase in computational cost and their efficiency is not
always satisfactory. Their method is based in enlarging the functional space
spanned by the RBF by including new functions that capture the disconti-
nuities in boundary conditions, and yields significant improvements in the
accuracy of the solution for the problems considered. In reference [122], the
solution space for combustion was enriched by approximating a flame as an
infinitesimally thin discontinuous curve separating the burned and unburned
regions under vortical flow.

7.13 Domain Decomposition and parallel com-
puter implementation
Any serious calculations of high dimensional PDEs will need to be performed

on a parallel computer, especially considering the discretization requirements.
A very large problem is decomposed into many smaller manageable problems
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each of which is performed in parallel, rather than sequentially. The domain
is partitioned into subdomains that may or may not overlap slightly. The
goal is to calculate as many sub-problems of nearly equal size in parallel and
to minimize inter-processor communication using the message passing inter-
face (MPI). The general goal is to assign each processor an equal amount
of work and to minimize the amount of communication between processors
by essentially minimizing the surface area of the subdomains, since the com-
munication time among processors is generally orders of magnitude slower
than calculations within a processor. Each processor is then responsible for
updating the unknowns associated within its subdomain only.

Domain decomposition methods have been successfully implemented in
solving both elliptic and time-dependent problems with RBF's (section 4.6).
Recently in [202], a dilute incompressible suspension polymer solution in a
Newtonian solvent was considered. They solved the Stochastic Differential
Equations (SDEs) for the polymer suspension and the PDEs governing the
flow, and applied the parallel DDM techniques to both the macroscopic and
microscopic components. Hence, the parallel domain decomposition method
increases the throughput, and, at the same time, removes the problem of
ill-conditioning of the system matrix associated with the RBF method. The
convergence of the scheme can be affected by the number of subdomains; the
results obtained are very good, judging by the convergence measure. They
achieved high efficiency (> 60 when using 20 CPUs).

7.14 Summary

High dimensional RBF-PDE calculations will require the smart utilization of
computer resources. Such calculations will require more complex hybrid al-
gorithm development in combination with moving nodes, transformations on
the independent and dependent variables, enrichment of the solution space,
determining those dimensions are most important, using domain decomposi-
tion, parallel computer implementation, and high precision arithmetic. Ra-
dial basis functions offer a convenient and powerful tool by which to solve
high dimensional PDEs on irregular domains.



Chapter 8

Afterword

The focus of this manuscript has been on introducing the MQ RBF method
as a tool for solving scattered data interpolation problems and as a tool for
solving PDEs. For the majority of the material presented, Matlab code has
been included that implements the algorithms and examples. The purpose of
including the Matlab code is twofold. One is so that the reader may instantly
begin to experiment with and use the algorithms and examples. The other
purpose is to foster the idea of reproducible research. Instead of just
describing the results of example computations, we have in most cases also
included the source code that produced the examples. A listing of all Matlab
programs is in appendix A.

Research in RBF methods continues to be very active. The RBF method
is relatively new (about 40 years old) and it is far from being fully developed.
But at the same time, it is mature enough to have been successfully applied
in a large number of applications. In closing, we briefly mention some open
problems as well as some areas where the application of RBF methods seems
promising.

8.1 Open Problems

The first open problem is how to accurately and efficiently evaluate a RBF
method when using a small shape parameter €, a small minimum separation
distance, and with N possibly large. Is there a way, that is applicable and
efficient with large N, to bypass the ill-conditioned linear systems and accu-
rately evaluate a RBF approximation for any value of the shape parameter in
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a computationally efficient manner. The holy grail would be the discovery of
an algorithm for RBF methods that is similar to the Fast Fourier Transform
and its O (N log N) operation count for pseudospectral methods. Chapter 4
chronicles the progress in this direction that has been made so far.

A second open problem is eigenvalue stability for time-dependent PDEs
(section 3.2.6). Can a way be found to apply boundary conditions, or per-
haps some other modification made, in order to ensure eigenvalue stability for
time-dependent problems? Perhaps penalty boundary conditions that have
been successfully used to enhance the stability properties of pseudospectral

methods [101] can be developed for RBF methods as well. Without the
application of boundary conditions, the MQ differentiation matrix (2.25) is
invertible [91]. This is in contrast to other methods such as finite differ-

ences and pseudospectral methods whose differentiation matrices are singu-
lar. Does the invertibility of the MQ differentiation matrix play a role in the
eigenvalue stability issues of the MQ method for time-dependent PDEs?

8.2 Promising Areas for RBF applications

Many problems in science and engineering are not well-posed due to issues
of accessibility and cost of measurement. Additionally, the boundary po-
sitions and/or boundary conditions may not be known or boundary data
may be missing. Inverse problems and their associated ill-posed boundary
value problems arise in areas such as non-destructive testing, imaging, electri-
cal impedance tomography, and contaminant transport in groundwater flow.
Such ill-posed inverse problems can be classified as those having: (1) one or
more unspecified boundary conditions, 2) missing or over-specified boundary
data, 3) the boundary not being clearly define, and (4) a semi-infinite do-
main with Cauchy conditions prescribed only on a part of the boundary. As
mentioned in section 8.1, MQ differentiation matrices are invertible without
boundary conditions being applied. This indicates that the MQ colloca-
tion method may be well-suited for application to ill-posed inverse problems
with missing or improperly applied boundary conditions. Some initial ap-
plications of RBF methods to ill-posed inverse problems can be found in
references [110), , 37, 43].

In addition to ill-posed inverse problems, another promising application
area for RBFs is high dimensional PDEs as discussed in chapter 7.
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8.3 Other Applications and Developments

We have discussed many applications and aspects of RBF methods, but it
is impossible to thoroughly discuss every application and development. In
closing we briefly mention some other applications and developments of RBF
methods: computing eigenmodes of elliptic operators [170], oscillatory RBF's
[78, 72], RBF methods on the sphere [62, , 73,79, 80, 74], divergence-free
RBFs [152, , , 80], options pricing approximation [102, , , 66,
: , 130], RBF quasi-interpolation [, , , : , 10, 11], RBF
Hermite interpolation [218] and symmetric collocation for PDEs [01, 1,
operator splitting [3], space-time RBFs [169], solution of PDEs [39, 83, ,
, , , 217], compactly supported RBFs [200, , 30], periodic RBF's
[216], moving least squares [208, |, problems with moving boundaries
[106], fast multipole methods [9, 11, 13, 15] for efficiently evaluating RBF
approximations with large N, solution of stochastic differential equations
[38], and basis enrichment methods to handle discontinuities and singularities
[22].
Appendix B lists a significant number of additional books and papers
that develop and apply meshless methods.
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Appendix A

Matlab programs

Below is a list of Matlab programs that are available for download at:

http://www.scottsarra.org/math/math.html

The programs implement the examples in the manuscript. The pro-
grams that are marked with an asterisk are also included in the text of the
manuscript. Each program included in the manuscript is small enough to fit
on a page or less. The programs have minimal comments and only on a few
occasions are they referred to in the text. This was deliberate, in order to
keep the focus of the manuscript on the MQ RBF method. Some time may
have to spent with the m-files in order to make them your own. It is hoped
that they may be easily be modified in order to solve your own problems.

acbfPreconditioner.m™* Implements the Approximate Cardinal Basis Func
tion preconditioner (section 4.5.1)

advectionMQ1d.m* Solves the 1d advection equation in section 3.2.6.

advectionDiffusionMQ.m* Solves a time-dependent advection-diffusion
equation (3.16) in one dimension using an explicit fourth-order Runge-
Kutta method for time integration.

advectionDiffusionMqTrapezoid.m* Solves a time-dependent advection-

diffusion equation (3.16) in one dimension using the implicit Trapezoid
method for time integration.

145


http://www.scottsarra.org/math/math.html

146 APPENDIX A. MATLAB PROGRAMS

advectionVariableShape.m Solves the advection equation (3.25) with vari-
able shape strategy in section 5.2.

affinceSpaceSvdSolver.m* Implements the affine space solver for the RBF
linear system. Section 4.4.

calculateFdStencilWeightsHeat Complex.m* Produces weights for the
finite difference mode calculation of section 5.6.

costFunctionShape.m* Cost function for the leave-one-out cross valida-
tion algorithm for selecting the shape parameter in section 5.2.

cubicSchrodingerMQ.m* Nonlinear Schrodinger equation from section
3.2.4.

dtvFilter.m Implements the DTV filtering postprocessing method of sec-
tion 5.5.

dtvFilterMQ.m Applies the DTV filter to postprocess the M(Q interpolant
of the discontinuous function 5.16.

evaluationMatrixMQ.m Returns 1d the evaluation matrix with entries
given by equation (2.6)

evaluationMatrixMQ2d.m* Returns the 2d evaluation matrix with en-
tries given by equation (2.6)

frankeProblemCenters.txt 618 centers on a quarter circle domain. The
first 118 centers are on the boundary of the region and the remaining
500 centers are in the interior of the domain. Used in several examples.

frankesFunction.m Franke’s function (2.8)

frankeProblemEvaluationPoints.txt 930 evaluation points on the quar-
ter circle domain of example 2.3.

frankeProblemGeneralizedMq.m An example in section 2.10 that uses
the generalized MQ (2.28) with various values of the exponent to in-
terpolation the Franke function.

frankeProblemLocalGlobalKappa.m Compares the local and global con-
dition numbers of the system matrix for a interpolation problem in
section 2.6.
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frankeProblemLsq.m* Approximates the Franke function (2.8) using a
least squares method in section 2.11.

generate ACBF Stencils.m* Finds local stencils for the ACBF precondi-
tioner of section 4.5.1.

generateFdStencils.m* Produces stencils for RBF finite difference mode
calculations.

greedyAlgorithm.m* The greedy algorithm of section 4.7.

greedyInterpolation.m Uses the greedy algorithm of section 4.7 to select
shape parameters in a 1d interpolation problem in section 4.7.

grpRbf.m* Implements the Gegenbauer post-processing method (section
5.5.3) for removing Gibbs oscillations from the MQ approximations of
discontinuous functions.

grpRbfDriver.m* An example of using the Gegenbauer post-processing
method.

heatComplexDomain.m* MQ collocation collocation solution of the 2d
diffusion equation on an irregularly shape domain (section 3.2.5).

heatComplexDomainFdMode.m Carries of the MQ finite difference ex-
ample of section 5.6.

hybridInterpolation.m* Implements the hybrid interpolation example in
section 2.4. The output is shown in figure 2.6.

improvedTruncatedSvd.m* Implements the improved truncated Singu-
lar Value solver. Section 4.3.2.

interpolationFrankeExample.m* 2d interpolation example from section
2.2.

interpolationFrankeExampleLOOCV.m* 2d interpolation example where
the shape parameter is selected by the leave-one-out cross validation
algorithm in section 77?.

locallyAdaptiveMQ.m Approximates a discontinuous function with the
locally adaptive MQ method. Section 5.5.
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mq.m Evaluates the MQ and integrated MQ RBFs

mqDerivatives.m Evaluates the first and second derivatives of the M(Q and
integrated MQ RBFs

mqVariousShapePlots.m Produces the plot in figure 2.1.

nearOptimalCentersAnnulus.m* Example of using the geometric greedy
algorithm of section 2.7 to generate near optimal, data independent,
center location on an annulus.

nonlinearBvpld.m* Solves a nonlinear boundary value problem in section
3.1.2.

nonStationaryInterpolation.m Examines the accuracy of a non-stationary
interpolation example vs. an error bound. Figure 2.5.

not AKnotInterpolationUnitCircle.m Implements the not-a-knot inter-
polation example from section 2.8.

not AKnotInterpolationVsStandard.m Implements standard MQ inter-
polation that is compared to the not-a-knot implementation in section
2.8.

phi.m Evaluates the MQ and integrated MQ (section 5.8) RBFs.

poissonAffine2.m Solves the Poisson problem (4.1) using the affine solver
to evaluate the linear system involved in section 4.4.

poissonBoundaryCollocation.m* Solves a Poisson problem using bound-
ary collocation (section 5.9).

poissonSVD.m Solves the Poisson problem (4.1) using the SVD to evaluate
the linear system involved in section 4.3.

poissonTSVD.m Solves the Poisson problem (4.1) using the truncated
SVD to evaluate the linear system involved in section 4.3.1.

poissonITSVD.m Solves the Poisson problem (4.1) using the improved
truncated SVD to evaluate the linear system involved in section 4.3.2.

poissonDomainDecomp.m Solves the PDE boundary value problem (4.1)
using the multiplicative Schwarz domain decomposition method.
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poissonExampleMQ.m* Solves the Elliptic PDE (4.1) with Dirichlet bound-
ary conditions over an range of the shape parameter. Plots error vs.
shape and the condition number of the evaluation matrix vs. the shape
parameter.

poissonExampleIMQ7.m An example that uses a integrated MQ (section
5.8) to solve a Poisson problem.

poissonGreedySingleShape.m Uses the greedy algorithm from section
4.7 to select a subset of centers, with the same shape parameter with
each center, to use in the solution of a Poisson problem.

poissonLocalGlobalKappa.m Compares the local and global condition
numbers of the evaluation matrix for a Poisson problem in section 2.6.

poissonNeumannMQ.m* An example of the MQ collocation method for
the Elliptic PDE (4.1) with both Dirichlet and Neumann boundary
conditions.

poissonExtendedPrecision.m Extended floating point precision of prob-
lem 3.10.

rk4.m “Classical” fourth order explicit Runge-Kutta method that is used
to advance in time all time-dependent PDE examples.

setUpHeatComplexFdMode.m Setups up derivative matrix for the MQ
finite difference mode calculation of the 2d diffusion example from sec-
tion 5.6.

stationaryInterpolation.m Examines the accuracy of a stationary inter-
polation example vs. an error bound. Figure 2.4.

systemMatrixMQ.m* Returns the 1d system or interpolation matrix with
entries given by equation (2.5).

systemMatrixMQ2d.m* Returns the 2d system or interpolation matrix
with entries given by equation (2.5).

truncatedSvd.m* Implements the truncated Singular Value solver. Sec-
tion 4.3.1.

vBurgersMQ.m* Burgers’ equation example from section 3.2.4.
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