

Radial Basis Functions

• First studied by Roland Hardy - 1968

$$s(x) = \sum_{j=1}^{N} \lambda_j \phi(\parallel x - x_j^c \parallel_2, \epsilon)$$

- Allow for scattered data sites to be easily worked with
- Topographical surfaces
- Intricate three-dimensional shapes

The most popular RBF that is used in applications today is the Multiquadric (MQ)

$$\phi(r) = \sqrt{1 + \varepsilon^2 r^2} = (1 + \varepsilon^2 r^2)^{1/2}$$

– Properties of the MQ are well-known [2]

A related RBF with properties not as well-known is the Generalized Multiquadric (GMQ)

$$\phi(r) = (1 + \varepsilon^2 r^2)^{\beta}$$
 $\beta = \cdots \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}, \frac{3}{2} \cdots$

- Researchers have recently suggested, but not proven, that the GMQ has desirable properties for β with non-halfinteger powers.

GMQ - Suggested Values for β

- Wang and Liu [3]: $\beta = 1.03$
- Xaio and McCarthy [4]: $\beta = 1.99$
- Kansa [1]: $\beta = 5/2$

The behavior of β and the shape parameter, ϵ , are still unknown at the conclusion of their research.

Condition Number vs. Accuracy

• Condition number - a measure of how well a problem will be accurately approximated by a numerical algorithm

$$f(x) = e^{x^3} + \cos(2x)$$

- When β increases, the optimal shape parameters increase
- Minimum error is approximately 10^{-5} for all values of β
- Condition numbers increase as shape parameters decrease
- Shape parameter must be large for GMQ to be well-conditioned
- Small shape parameters are required to obtain good accuracy

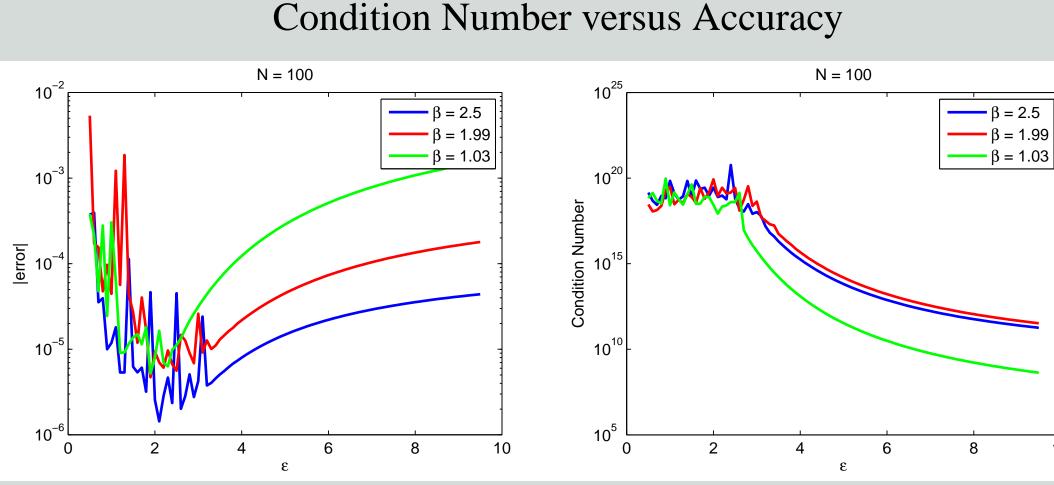
Both instances can obviously not occur at the same time.

- Uncertainty Principle the more favorably valued one quantity is the less favorably valued the other is
- Impossible to have good accuracy and conditioning at the same time.

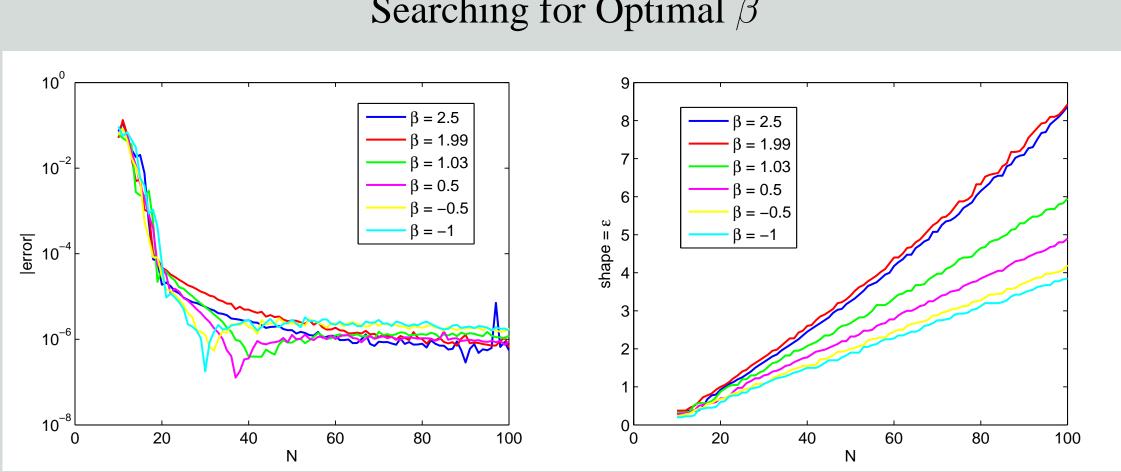
A Numerical Study of Generalized Multiquadric Interpolation

Maggie Chenoweth

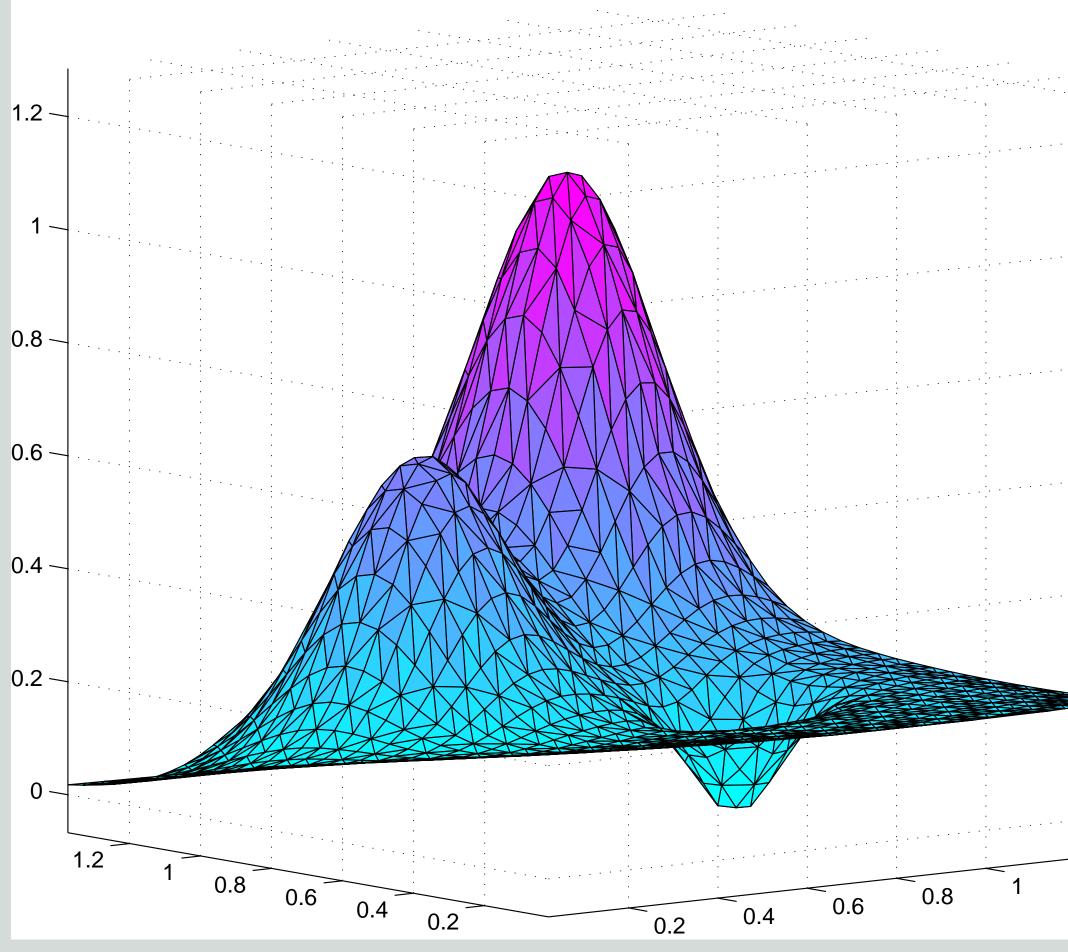
Department of Mathematics, Marshall University

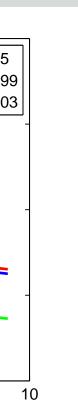


Searching for Optimal β



Franke Function Generated Using GMQ Interpolation





Searching for Optimal β

Minimum number of centers, N, over a range of shape parameters needed to achieve a targeted accuracy of 10^{-5} :

TABLE 1: N and Shape			
β	Smallest N	ϵ	
2.5	25	1.25	
1.99	32	1.94	
1.03	27	1.29	
0.5	25	0.98	
-0.5	23	0.82	
-1	21	0.63	

Franke Function

Topographical map created in Matlab with the GMQ.

- Scattered data approximation methods
- -N = 618 centers
- -M = 930 evaluation points

	TABLE 2: Franke Function			
β	ϵ	$\kappa(eta)$	Max Error	
2.5	3.5	1.6409e+018	5.534104481563773e-006	
1.99	4	2.4323e+018	1.790357816333632e-005	
1.03	3	1.2784e+018	5.432703227947755e-006	
0.5	2	7.2530e+018	8.662307697648863e-005	
-0.5	2.25	6.3693e+018	4.832552523308109e-006	
-1	2	1.2210e+018	7.464702949815105e-006	

Summary

- The MQ does not produce a more accurate approximation than the GMQ.
- Optimal values for β are possibly problem dependent.
- It is important to choose a shape parameter that allows for the GMQ interpolation to be critically conditioned

References

- [1] E. J. Kansa. Numerical simulation of two-dimensional combustion using mesh-free methods. Engineering Analysis with Boundary Elements, 2009.
- [2] S. Sarra. Radial basis function interpolation. *Submitted to* SIURO, 2009.
- [3] JG Wang and GR Liu. On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Meth. Appl. Mech. Eng., 191:2611–2630, 2002.
- [4] J. R. Xaio and M. A. McCarthy. A local heaviside weighted meshless method for two-dimensional solids using radial basis functions. Computational Mechanics, 31:301-315, 2003.

