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Abstract

Time-dependent advection-diffusion-reaction and diffusion-reaction

equations are used as models in biology, chemistry, physics, and engi-

neering. As representative examples, we focus on a chemotaxis model

and a Turing system from biology and apply a local radial basis func-

tion method to numerically approximate the solutions. The numerical

method can efficiently approximate large scale problems in complexly

shaped domains.
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1 Introduction

Systems of advection-reaction-diffusion and reaction-diffusion equations model
a large number of physical phenomena in various scientific disciplines. These
areas include chemical reactions, population dynamics, flame propagation,
and the evolution of concentrations in environmental and biological processes.
In this work we focus on bacterial chemotaxis and on pattern formation in a
Turing system as representative examples.
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Chemotaxis is defined as the movement of a cell or organism in a direction
corresponding to a gradient of increasing or decreasing concentration of a
particular substance. In particular, a property of many bacteria is that
in the presence of certain chemicals, called chemoattractants, they move
preferentially towards higher concentration of the chemical [29]. Much of
the modeling of chemotaxis is based on the original Keller-Segel chemotaxis
model [22] and variations of the original model. Modified versions of the
original Keller-Segel model are explored in [17].

Numerical simulations for chemotaxis models appearing in the literature
have been typically carried out on rectangular domains. This geometry is
chosen either to simplify the development of the numerical method or pos-
sibly because the particular numerical method is only applicable on such
simple domains. Previously used numerical methods for chemotaxis prob-
lems on rectangular domains include a discontinuous Galerkin method [11]
and various finite difference and finite volume methods [8, 7, 43, 49, 50]. In
[6], a finite volume scheme is developed and applied to chemotaxis problems
on circular domains. The method involves mapping a cartesian grid from a
square domain to a circle. The method allows for numerical simulations to
be performed which more closely resemble the results of experiments carried
out in a circular petri dish.

Turing first described how a system of coupled reaction-diffusion equa-
tions could give rise to spatial patterns in chemical concentrations through
a process of chemical instability [48]. Since that time, Turing systems have
been used to model complex spatial patterns that are found in nature [1].
The applications include pattern formation in biological systems [29], for ex-
ample patterns on fish [2] and butterflies [39]. Previously used numerical
methods for Turing systems include various finite difference [2, 10, 51], finite
element [25], and finite volume methods [6].

We note that other, more classical numerical methods, such as the Dis-
continuous Galerkin Method (DGM) and the Finite Element Method (FEM),
may also be implemented in complexly shaped domains. However, like most
classical numerical methods, the DGM and FEM both require a mesh (or
grid) to be implemented on. In two dimensions, the meshes usually consist
of elements with triangular or quadrilateral shapes. In higher dimensions,
the boundaries of the elements become (possibly curved) surfaces, and the
interiors become volumes instead of areas. Creating such meshes is a very
sophisticated process and generating the mesh represents a significant over-
head in the implementation of the methods. After the mesh is generated
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the quality of the mesh must be assessed, as an “inferior” (reference [14] ad-
dresses mesh quality) mesh may adversely affect the accuracy of the method.
In general, mesh generating software tend to be complex codes that are in-
accessible to the average user. Thus, the user must give up control, and the
software is used as a “black box” [31]. The RBF method does not require
that a mesh be generated in a (potentially complex and computationally ex-
pensive) preprocessing stage. It is for this reason that the RBF method is
referred to as a meshfree or meshless method.

The main features of the local RBF method that we describe are that it is
simple, generally applicable, and efficient. The method places no restriction
on the shape of the domain. Thus, the shape of the domain can be dictated
by the particular application and not by the limitations of the numerical
method. The method may be efficiently implemented with thousands of
points in large domains.
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Figure 1: An illustration of the RBF uncertainty principle - the attainable
error and the condition number of the system matrix cannot both be kept
small. Left: accuracy versus the shape parameter. Right: condition number
of the system matrix versus the shape parameter.
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Figure 2: Example center distribution with N = 500 and stencils with n =
50. Left: An interior stencil with the base center marked with a square and
supporting centers with an asterisk. Right: A boundary stencil for enforcing
no flux boundary conditions. The stencil is based at the one center located
on the boundary.

2 A local RBF method for time-dependent

PDEs

In this section we describe a local RBF method for time-dependent PDEs.
More detailed information on RBF methods in general can be found in recent
research monographs on RBF methods [4, 12, 37, 52]. Variations of the local
RBF methods for the solution of steady and time-dependent PDEs were first
used in references [45, 46] and [42]. Recent applications of local RBF methods
include [18, 40, 41, 34].

Each problem is discretized with a set ofN distinct pointsX = {xc
1
, . . . , xc

N}
in Rd called centers. No restrictions are placed on the shape of problem do-
mains or on the location of the centers. At each of the N centers, the local
RBF method considers a local interpolant of the form

Inf(x) =
∑

k∈Ii

akφ (‖x− xc
k‖2 , εi) (1)

where a is a vector of expansion coefficients, φ is a RBF, and Ii is a vector
associated with center i that contains the center number and the indices
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of the n-1 nearest neighboring centers. Each center and its n-1 neighbors
are called a stencil. A typical stencil is shown in the left image of figure 2.
Enforcing the interpolation conditions

Inf(xk) = fk, k ∈ Ii (2)

on each stencil gives N , n× n linear systems

Ba = f (3)

to be solved for the expansion coefficients. The matrix B is called the in-
terpolation matrix or the system matrix. The local system matrices have
elements

bjk = φ(
∥

∥xc
j − xc

k

∥

∥

2
, εi), j, k = Ii(1), . . . , Ii(n). (4)

Our choice of RBF is the multiquadric (MQ)

φ(r, ε) =
√
1 + ε2r2 (5)

which is popular in applications [20, 21] and is representative of the class of
global, infinitely differentiable RBFs containing a free parameter called the
shape parameter. The MQ system matrix B is guaranteed to be invertible
[28], so the expansion coefficients are uniquely defined on each stencil.

For a fixed set of centers, the shape parameter affects both the accuracy
of the method and the conditioning of the system matrix. A typical result
from interpolating a smooth function is illustrated in figure 1. A condition
number is used to quantify the sensitivity to perturbations of a linear system
and to estimate the accuracy of a computed solution [9, 47]. Using the 2
norm, the matrix condition number is

κ(B) = ‖B‖
2

∥

∥B−1
∥

∥

2
=

σmax

σmin

(6)

where σ are the singular values of B. The RBF method is most accurate
for smaller values of the shape parameter where the system matrix is ill-
conditioned. The attainable error and the condition number of the system
matrix cannot both be kept small. This relationship has been dubbed the
uncertainty principle [38].

Algorithms have been recently developed that bypass solving the po-
tentially ill-conditioned linear system (3). For instance, the RBF-QR al-
gorithm [15, 13] evaluates a RBF interpolant (using the Gaussian RBF
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φ(r, ε) = e−ε2r2) in a stable manner for all values of the shape parame-
ter. However, the RBF-QR approach has un-optimized parameters that the
user must specify and brings with it a significant amount of computational
cost [13]. At its current level of development, while promising, the RBF-QR
method does not seem ready for serious applications. In reference [36] it is
suggested, and examples are given, to illustrate that it may be more efficient
to implement the RBF method in a more accurate floating point number sys-
tem rather than to resort to methods that bypass solving the linear system
(3).

To approximate derivatives of a function f at the center locations, a linear
differential operator L is applied to (1) and it is evaluated at the center on
which the stencil is based to get

Lf(xi) =
∑

k∈Ii

akLφ (‖xc
i − xc

k‖2 , εi) . (7)

Equation (7) can be written more concisely as a dot product

Lf(xi) = h · a (8)

where a is the n × 1 vector of RBF expansion coefficients and h is a 1 × n
vector containing the elements

hi = Lφ (‖xc
i − xc

k‖2 , εi) , k ∈ Ii. (9)

The dependence on the RBF expansion coefficients can be removed from (8)
by noting that

Lf(xi) = hB−1f(Ii) = (hB−1)f(Ii) = w · f(Ii) (10)

where the stencil weights are

w = hB−1. (11)

That is, the weights are the solution of the linear system

wB = h. (12)

Thus, space derivatives are approximated simply by multiplying the function
values at the centers of the stencil by the weights.
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Both the condition number (6) and the solution of the linear system (12)
are calculated from the singular value decomposition (SVD) of the matrix
B. The SVD of a N ×N matrix B is B = UΣV T where U and V are N ×N
orthogonal matrices and Σ is a N ×N diagonal matrix with the N singular
values of B as its elements [9, 47]. A property of orthogonal matrices is
that the matrix inverse is simply the transpose of the matrix. Therefore, the
solution of (12) is w = h(V Σ−1UT ).

A different value of the shape parameter may be used on each stencil.
An effective way to select the shape parameter is based on the fact that
RBF methods are most accurate when their system matrix is ill-conditioned.
When implementing the method on computers that use double precision
floating point arithmetic [30], the shape parameter can be specified on each
stencil so that 1013 ≤ κ(B) ≤ 1015. If the error is considered as a function of
the shape parameter, in most cases this results in a shape parameter being
used that corresponds to a point on the error curve just before the curve
begins to oscillate as is the case in figure 1. We note that the condition
number range will be different if floating point numbers systems other than
double precision are employed [36].

The shape parameter selection at each center is described in the following
pseudocode:

kappa = 0

while kappa < kappaMin and kappa > kappaMax:

form B

U, S, V = svd(B)

kappa = max(S)/min(S)

if kappa < kappaMin:

shape = shape - shapeIncrement

elseif kappa > kappaMax:

shape = shape + shapeIncrement

which adjusts the value of the shape parameter until the system matrix has
a condition number in the desired range. When an acceptable matrix B is
found, its SVD is then used to solve equation (12) for the stencil weights.
The setup cost involves calculating the SVD of N +R, n× n linear systems,
where R is the number of rejections of the shape parameter choice in the
above loop. After setup, the local method approximates a space derivative
with N dot products of length n vectors. The number of rejections R is
discussed later in the numerical examples.
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n 3 5 8 10 15 20 25 100
error 5.4e-3 3.7e-5 8.2e-7 8.1e-7 6.8e-7 9.3e-7 8.2e-7 6.7e-7

Table 1: Maximum error from differentiating the function f(x) =
exp(sin(πx)) with N = 100 versus stencil size.

The optimal choice of the stencil size n is largely problem dependent,
but some generalizations can be made and are illustrated by the following
example. The function f(x) = exp(sin(πx)) is differentiated on N = 100
evenly spaced centers on the interval [−1, 1]. The results are summarized in
table 1. The local method with a stencil size as small as n = 8 is about as
accurate as the global method with n = N . The local method with n ≪ N
is often just as accurate as the global method. Since the derivative is a local
property, intuitively it seems reasonable that it can be accurately approxi-
mated without using information from the entire domain. The local method
can have accuracy comparable to the global method while also enjoying both
considerably smaller storage requirements and a smaller flop count than the
global method. In two and three dimensions, computational evidence indi-
cates that a stencil size in the range 20 ≤ n ≤ 100 is adequate in most cases.
If the solution is relatively smooth, n ≈ 20 is usually sufficient. Larger n will
be required if the solution is rapidly varying and/or features small detailed
structure. The global RBF method theoretically converges at a spectral or
exponential rate as the shape parameter and the minimum separation dis-
tance between centers are refined [24]. However, as the shape parameter
and the minimum separation distance between centers are refined the condi-
tion number of the system matrix grows and the limitations of floating point
arithmetic prevent the convergence trend from continuing beyond a certain
point. At this point, the local RBF method is usually able to match the
accuracy of the global method with some small stencil size.

After the PDE is discretized in space with the RBF method, the resulting
system of ODEs

ut = F (u)

is advanced in time with an ODE method, which is often called a method
of lines approach. We have used a fourth-order Runge-Kutta method [5] in
all the numerical examples. It is well known [32, 35] that RBF methods
for time-dependent PDEs that are purely advective may have differentiation
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n error density time
400 3.4e-5 3.3 48.1
200 3.4e-5 1.3 25.0
100 4.0e-5 0.67 13.2
60 3.4e-5 0.4 8.4
40 3.4e-5 0.27 5.7
20 2.9e-5 0.13 2.6
12 3.0e-4 0.067 2.1

Table 2: The results of solving equation (13) with the local RBF method
with various stencil sizes.

matrices that have eigenvalues will positive real parts which make stable time
integration impossible. However, this is not the case for PDEs containing
diffusive terms and RBF methods for advection-diffusion problems can be
stably advanced in time with a suitable choice of time step size.

2.1 A motivating example

First we consider a two-dimensional advection-diffusion-reaction equation

ut = ν (uxx + uyy)− α (ux + uy) + γu2(1− u). (13)

with a known analytical solution in order to gauge accuracy versus the stencil
size for this type of problem. The exact solution is

u(x, y, t) = [1 + exp(a [x+ y − bt] + c)]−1 (14)

where a =
√

γ/4ν, b = 2α +
√
γν, and c = a(b − 1). The initial conditions

and Dirichlet boundary conditions are specified using the exact solution. This
problem has been previously used as a test problem in [19]. The domain for
the problem is a circular region of radius ten that is centered at the point
(5, 5). The domain is discretized with N = 15, 000 evenly spaced centers.
The local RBF method is used with several different stencils sizes to advance
the solution to time t = 5 with a time step size of ∆t = 0.005. The results
are summarized in table 2 which lists the stencil size (n), the maximum error
at time t = 5, the percentage of non-zero elements (density) of the N × N
differentiation matrix, and the execution time in seconds. Implementing the
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method with n = 20 is just as accurate as the method with n = 400. In
fact, the accuracy results are very similar over the stencil size range of 20
to 400. Of course with smaller stencils, are associated faster execution times
as well as reduced memory requirements. The local method with n = 20
requires only about one-tenth of one percent of the computer memory than
does the global method. We note that it is not possible to implement the
global method with n = 15, 000 on typical desktop computers due to excessive
memory requirements.

2.2 No flux boundary conditions
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Figure 3: Eigenvalues of the differentiation matrix of the PDE (17). Left:
global RBF method. Right: local RBF method with n = 8.

Many PDE problems in application areas such mathematical biology have
zero Nuemann or no flux boundary conditions of the form

∇u · n = 0 (15)

where n is a unit normal vector. A literature search only revealed one [42]
implementation of a RBF method for a time-dependent PDE with Neumann
boundary conditions. In [42], the authors arranged three layers of orthog-
onal grids near and including the boundaries and then used a polynomial
based second-order finite difference scheme to find the value of the PDE so-
lution on the boundary. Of course this approach requires the use of very
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simply shaped domains such as rectangles and can not be applied in com-
plexly shaped domains. Thus, we describe the implementation of Neumann
boundary conditions in a more general setting.

As an example we consider a two dimensional problem with n = 〈n1, n2〉.
The value of u on the boundary can be found from the Neumann boundary
condition (15) as follows. Let wx and wy be the stencil weights that respec-
tively discretize the first derivatives with respect to x and y on a stencil that
only includes one boundary point (center number i) such as the stencil in
the right image of figure 2. Then, the boundary value is specified as

ui =
1

n1

iw
x
1
+ n2

iw
y
1

(

−n1

i [w
x
2
+ · · ·wx

n]− n2

i [w
y
2
+ · · ·wy

n]
)

(16)

which is found by solving for ui in the discretization of equation (15).
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Figure 4: Cell density solution from the system (21) at t = 1. Left: surface
plot. Right: density plot.

The enforcement of boundary conditions is important in numerical meth-
ods for PDEs as it affects both the accuracy and the stability of the method
as it is advanced in time. To gain insight about the effect of applying a no
flux boundary condition in a RBF method we consider the advection-diffusion
equation

ut + ux = uxx (17)

on the interval [0, 1] with no flux boundary conditions applied at both ends
of the interval. The exact solution of the problem is u(x, t) = exp(−(n2π2 +

11



1

4
)t + x

2
)(−4π cos(2πx) + sin(2πx)). The problem is discretized with N =

40 equally spaced centers. While equation (16) can be used to find the
value of u on the boundary, it is of no use in examining eigenvalue stability.
To examine stability, the boundary conditions need to be incorporated into
the differentiation matrix of the PDE. This can be done for the advection-
diffusion equation (17) as follows. Let D1 and D2 respectively discretize first
and second order derivatives and dij be the elements of D1.

Since uxx = D1D1u and ux(x1) = ux(xN ) = 0







u1

...
uN







xx

= D1















0
u2

...
uN−1

0















x

=







d0,2 · · · d0,N−1

...
. . .

...
dN,2 · · · dN,N−1













u2

...
uN−1







x

(18)

where






u2

...
uN−1







x

=







d2,0 · · · d2,N
...

. . .
...

dN−1,0 · · · dN−1,N













u1

...
uN






. (19)

The N ×N matrix

D̄2 =







d0,1 · · · d0,N−1

...
. . .

...
dN,1 · · · dN,N−1













d1,0 · · · d1,N
...

. . .
...

dN−1,0 · · · dN−1,N






(20)

discretizes the second derivative at the interior centers and also enforces zero
Neumann boundary conditions at the endpoints. Now let D̄1 be the first
order differentiation matrix that has been modified to account for the no
flux boundary conditions by setting its first and last row to zero. Then the
matrix D = D̄2 − D̄1 discretizes the space derivatives of the PDE and also
enforces the boundary conditions.

The problem is discretized with N = 40 equally spaced centers and both
the global and local RBF methods are applied with the solution being ad-
vanced in time to T = 0.05. The global method with shape parameter
ε = 4.3 and the local method with a stencil size of n = 8 and ε = 2.2 both
have a system matrix with a O (1014) condition number. The eigenvalues
of both differentiation matrices, shown in figure 3, all have non-positive real
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parts and thus may been stably advanced in time with explicit time stepping
methods. Notice however, that for stability, the global method will require
a time-step approximately 2.5 times smaller than the local method. The
maximum error from the global method is 9.8e-4 while the local method has
a slightly smaller maximum error of 3.8e-4.

3 Numerical Examples

All examples have been advanced in time with a fourth order Runge-Kutta
method with a time step size of ∆t = 0.005. The weights for all stencils were
computed with system matrices that had condition numbers in the range
1013 ≤ κ(B) ≤ 1015.

3.1 example 1

The example is based on a biological experiment described in [3]. In the
experiment, patterns were formed by Escherichia coli and Salmonella ty-
phimurium when they were placed in a liquid medium and exposed to in-
termediates of the tricarboxylic acid cycle. The bacteria group together in
large masses to form patterns and then randomly rearrange as time evolves.
A mathematical model for the experiment was proposed in [49]. The model
consists of a system of two nonlinear PDEs: an advection-diffusion equa-
tion for the cell density coupled with a reaction-diffusion equation for the
chemoattractant concentration. The model is

ut =
1

3
∇2u− 80∇ ·

[

u

(1 + v)2
∇v

]

(21)

vt = ∇2v +
u2

1 + u2

were u is the cell density and v represents the chemoattractant concentration.
The no flux boundary conditions

∇u · n = 0 (22)

∇v · n = 0

are enforced. The initial conditions are v = 0 for the chemoattractant and
the initial values of the cell densities u are set to be uniformly distributed
random numbers between 0.95 and 1.05.

13



The model has been evaluated numerically on square domains in [49] and
[8]. Since the RBF method is applicable on domains of any shape, we take
the domain to be a circle of radius 2 and uniformly distribute N = 4000
centers over the domain in a pattern such as in figure 2. A local stencil of
size n = 100 is used. To indicate the extreme sparsity of the local method
with these settings, the non-zero elements of the differentiation matrices are
plotted in figure 5. Only 2.5 percent of the elements of the matrix are non-
zero.

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 400000

Figure 5: The non-zero elements of a differentiation matrix from the local
RBF method with N = 4000 and n = 100.

The cell density at t = 1 is shown in figure 4. The local RBF method
solution evolves with the same qualitative features as those in [49] and [8],
regardless of the differently shaped domain and of course, different random
initial conditions.

3.2 example 2

Next we consider the chemotaxis model

ut =
1

4
∇2u− α∇ ·

[

u

(1 + v)2
∇v

]

+
1

100
u (20− u) (23)

vt = ∇2v +
1

5
u2 − uv
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Figure 6: The cell density solution from the system (23) with α = 2.25. The
initial concentration evolves into a set of continuous, concentric rings. Left:
surface plot. Right: density plot.

that is described in [29]. The domain is taken to be a circle of radius 15
√
2

so that we may compare to results in [6] where the problem was solved with
a finite volume scheme on a grid that was mapped from a square to a circle.
No flux boundary conditions are applied and the initial conditions are taken
to be v = 0 and

u(x, y, 0) =

{

1 if
√

x2 + y2 ≤ 1

2

0 otherwise.

The parameter α is set to α = 2.25 for which the correct qualitative behavior
of the cell density solution is for the initial condition to develop into contin-
uous, concentric rings. N = 15,000 uniformly distributed centers are used
(50% less than in [6]) and a local stencil size of n = 100. The solution is
advanced to t = 75 and the cell concentration is shown in figure 6.

For α = 5, the correct qualitative behavior of the cell density solution is
for the initial condition to develop into concentric spotted rings. With this
value of α and the same initial condition, N , and n as the continuous rings
example, the solution is advanced to t = 75. The results are shown in figure
7. Again, the correct qualitative behavior of the solution is observed.

In the setup phase, only R = 2 SVD are rejected. This small number is
due to the uniform center distribution. The condition number of the system
matrix is affected both by the value of the shape parameter and the smallest
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Figure 7: The cell density solution from the system (23) with α = 5. The
initial concentration evolves into a set of continuous, spotted rings. Left:
surface plot. Right: density plot.

distance between any two centers on the stencil. Thus with uniform centers,
after the shape is selected for the first stencil, the same shape parameter
can be used with every other center in order to get a system matrix with a
condition number in the desirable range.

3.3 example 3

The next example again considers the model (23) with α = 2.25, but this
time on a circular domain of radius 20 which is centered at the origin and
has two holes removed. The first hole is a circle of radius 2 centered at (4, 7)
and the second hole is a circle of radius 1 centered at (−3, 3). We note that
on such a domain that the method described in [6] is not applicable. The
domain is shown in figure 8. The initial bacterial concentration is zero ev-
erywhere except inside a circle of radius 0.5 that is centered at (−5, 5) where
the bacteria concentration is set to one. The chemoattractant is initially
zero throughout the domain. Once again, zero flux boundary conditions are
applied and N = 15, 000 scattered centers are distributed throughout the
domain as follows. The outer boundary is discretized with 600 evenly dis-
tributed centers, the radius two circle and the radius one circle are discretized
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Figure 8: Domain and an example center distribution for example 3.

respectively with 60 and 30 evenly spaced centers. The remaining centers are
located throughout the interior of the domain by adding centers one by one
to the middle of the largest hole in the centers that have already been added
to the domain. This methodology ensures that the centers cover the domain
in a fairly uniform manner and that no two centers are close together relative
to the spacing of the centers as a whole. The algorithm is described in detail
in [27]. An example center distribution is illustrated in figure 8. In the setup
phase, R = 1493 SVD are rejected which corresponds to one shape parameter
adjustment being made at approximately 10% of the centers in the domain.
This is due to the smallest distance between any two centers on a stencil not
being the same for every stencil as was the case in the previous example.

The cell density solution is advanced to time t = 100 and the solution at
several times is shown in figure 9. At t = 64, the continuity of one of the
outer rings is broken as it runs into the two holes in the domain. By t = 75
the gaps in the ring are starting to close and the ring is again becoming
continuous. This trend continues until the end of the simulation at t = 100.
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3.4 example 4 - Turing equations

In [48], a reaction-diffusion model of the form

ut = D∇2u+ f(u, v) (24)

vt = ∇2v + g(u, v)

for two interacting chemicals with periodic boundary conditions was first
considered. In the equations u(x, y, t) and v(x, y, t) represent chemical con-
centrations, D is the ratio of the diffusion coefficients of the two chemi-
cals, and the nonlinear reaction terms f and g model the chemical kinetics.
It well-known that for certain parameter settings that the equations have
steady-state solutions in which u and v evolve into spatial patterns featuring
objects such as dots and stripes [29]. After their introduction, Turing sys-
tems were later studied with no-flux boundary conditions and were used in
biology to model pattern forming phenomena and in ecology where u and v
become species densities [44]. Subsequently the equations were solved with
mixed and Dirichlet boundary conditions and modified spatial patterns were
observed [26]. The spatial patterns are affected by both the shape of the
domain and by the type of boundary condition that is applied.

As a particular example we consider the Turing system

ut = D δ∇2u+ αu(1− τ1v
2) + v(1− τ2u) (25)

vt = δ∇2v + βv

(

1 +
ατ1
β

uv

)

+ u(α+ τ2v)

on a ”butterfly” shaped domain (shown in the left image of figure 10) that
has a boundary given by the equation

r(θ) = 3esin θ sin2(2θ) + 3ecos θ cos2(2θ), 0 ≤ θ ≤ 2π. (26)

The following parameters were used: δ = 0.0045, D = 0.516, τ1 = 0.02,
τ2 = 0.2, α = 0.899, β = −0.91, and γ = −α. References [2] and [51] can
be consulted for an explanation of the choice of parameters. In references
[2] and [51] the particular parameter choices were shown to produce spotted
spatial patterns on rectangles and spheres.

The domain is discretized with 8125 total centers of which 425 are located
on the boundary and zero Dirichlet boundary conditions are applied to both
u and v. The initial conditions for both u and v are uniformly distributed
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random numbers between -0.5 and 0.5. A local stencil of size n = 100 is used
and the solution is advanced to time t = 120 at which a steady-state solution
has been reached. The steady-state solution of u, in the right image of figure
10, features the expected spotted spatial pattern.

4 Conclusions

RBF methods have steadily gained in popularity in recent years due to their
simplicity, ease of implementation, and flexibility. The method is essentially
the same for three dimensional problems as it is for one dimensional problems
due to its dependence on the distance between centers, and not the location
of the centers. This leads to relatively simple computer code for high dimen-
sional problems. Due to the complete freedom to locate centers, the method
places no restriction on the shape of problem domains. Thus, the method
is not restricted to rectangular domains and the shape of the domain can
instead be dictated by the application.

For large problems requiring tens or hundreds of thousands of discretiza-
tion points, it is not feasible to implement the global RBF method due to the
dense structure of the associated matrices. Fortunately, local RBF methods
with relatively small stencil sizes can produce solutions with accuracy com-
parable to the global method, but in a more efficient manner and without
adding the complications of domain decomposition techniques which often
must be resorted to in large scale problems. In the numerical examples, we
reported results using a stencil size of n = 100. However, the solutions were
visually indistinguishable when using a stencil size in the range 20 ≤ n ≤ 100.
Additionally, we have described a way to select the shape parameter on each
stencil that is based on the condition number of the local system matrix.

Chemotaxis models and Turing systems have been used as examples, but
the local RBF method is equally well applicable to other processes that are
governed by advection-reaction-diffusion or reaction-diffusion type equations.
As a template for such applications, the Matlab source code for example 2
is available at http://www.scottsarra.org/math/math.html.

The local RBF method is well suited to modern heterogeneous computer
architectures that feature both CPU and graphical processing units (GPUs).
GPUs have become massively parallel devices for implementing floating point
operations. An example of a GPU accelerated computation is in reference
[16] where a 45 to 75 time speedup was realized when compared to a CPU
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alone approach. Others examples include a speedup factor of 85 in [23] and
a 34-fold speedup in [33]. In the setup stage of the local RBF method, the
calculation of the N sets of stencil weights could be distributed between
computational cores. In a similar manner, the dot products required to
approximate space derivatives at each center could be distributed among
cores. Our current focus is on implementing such an approach that would
allow problems in complexly shaped domains in three or more dimensions to
be efficiently solved.
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Figure 9: Cell density solution of the system (23) with α = 2.25 on the
domain shown in figure 8.
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Figure 10: Left: An example discretization of the domain outlined by equa-
tion (26) with 1020 scattered centers. Right: Spotted spatial pattern in the
steady-state solution of the Turing system (25).
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