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Abstract

Under the governing equations of Hyperbolic Heat Transfer, energy propagates
through a medium as a wave with sharp discontinuities at the wave front. The
use of spectral methods to solve such problems numerically results in a solution in
which strong numerical oscillations are present due to the Gibbs-Wilbraham Phe-
nomenon. It is demonstrated that a spectrally accurate solution can still be obtained
via a postprocessing technique.
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an discrete Chebyshev coefficients

a(1)
n discrete Chebyshev coefficients, 1st derivative

Cλ
n nth order Gegenbauer polynomial

f̂λ
l continuous Gegenbauer coefficients

[f ](x) function discontinuity

ĝλ
l approximate Gegenbauer coefficients

ĝλ
ε (l) approximate Gegenbauer coefficients in a subinterval

hλ
n Gegenbauer normalization function

J edge detection critical threshold

km global Gegenbauer reconstruction parameter

kλ global Gegenbauer reconstruction parameter

S(x,t) dimensionless energy generation rate

T(x,t) dimensionless temperature

Tk kth order Chebyshev polynomial

t dimensionless time

uN Chebyshev partial sum

ue(x) edge series

un(x) enhanced edge series

uλ,ε
m Gegenbauer approximation in a subinterval

Q(x,t) dimensionless heat flux

Q edge detection enhancement exponent

x dimensionless space variable in [a, b]

γ coordinate map parameter

Γ Gamma function

∆t time step

ε half the width of a subinterval [a, b]

η edge detection neighborhood parameter

λ Gegenbauer polynomial parameter

ψ dimensionless space variable in [−1, 1]
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1 Introduction

In situations when the elapsed time during a transient is very small or when
temperatures near absolute zero are involved, the classical diffusion (parabolic)
theory of heat transfer breaks down since the wave nature of thermal energy
transport becomes dominant. The hyperbolic heat equation models this pro-
cess and results in energy propagating through a medium as a wave with sharp
discontinuities at the wave front.

The dimensionless governing equations of Hyperbolic Heat Transfer are

Tt + Qx = S/2 (1)

Qt + Tx =−2Q (2)

where T (x, t) is the temperature, Q(x, t) is the heat flux, and S(x, t) is the
energy generation rate.

Previously in the literature, the numerical solutions of hyperbolic heat transfer
problems have been obtained using the Finite Element Method in [1], and by
MacCormack’s method in [2], and [3]. In previous numerical investigations,
typically 1000 grids points were used and numerical oscillations still remained
in the solution. Non-oscillatory finite difference methods [4,5] which suppress
oscillation by using a flux or slope limiter are available. However, the methods
are also know to smear the solution at sharp fronts. The spectral method with
postprocessing will resolve all fronts sharply.

The first attempt to apply spectral methods to the problem was in [6] where
conservative smoothing was used to obtain results with significantly fewer grid
points than MacCormack’s method while eliminating most of the spurious os-
cillations. Conservative smoothing amounts to an artificial viscosity, which
can be applied selectively in both space and time. However, the global nature
of spectral methods causes a spatially localized viscosity to be felt through-
out the computational domain and the locally applied viscosity degrades the
accuracy of the entire solution, not just around discontinuities. Additionally,
conservative smoothing had difficulty controlling oscillations located close to
boundaries. The approach used here will allow the problem to be solved with
spectral methods without adding any artificial viscosity.

The superiority of Spectral Methods for the solution of partial differential
equations for problems whose solutions possess a certain amount of inher-
ent regularity has been well established. But until recently, spectral methods
seemed an inappropriate choice for the solution of hyperbolic problems whose
solution may develop sharp discontinuities. By viewing the Gibbs-Wilbraham
oscillations not as noise, but as valuable information from which the physically
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correct solution can be obtained, spectral accuracy can be recovered.

This paper is organized as follows: In Section 2 the Chebyshev pseudospectral
method is briefly reviewed. Section 3 summarizes methods developed in [7],
[8] and [9] to locate discontinuities, or edges, in the numerical approximations
and specializes the method to the Chebyshev pseudospectral approximations.
Edge locations will need to be known in order to apply the postprocessing
method. Section 4 describes the Gegenbauer reconstruction procedure (GRP)
for non-periodic functions developed in [10] and [11]. Numerical results are
presented in section 5.

2 Chebyshev Collocation Methods

The standard collocation points for a Chebyshev Collocation (Pseudospectral)
method are usually defined by

xj = −cos(
πj

N
), j = 0, 1, ..., N. (3)

These points are extrema of the N th order Chebyshev polynomial,

Tk (x) = cos(k arccos (x)). (4)

The points are often labelled the Chebyshev-Gauss-Lobatto (CGL) points, a
name which alludes to the points role in certain quadrature formulas. The
CGL points cluster quadratically around the endpoints and are less densely
distributed in the interior of the domain.

The Chebyshev Collocation method is based on assuming that an unknown
PDE solution, u, can be represented by a global, interpolating, Chebyshev
partial sum,

uN(x) =
N∑

n=0

anTn(x). (5)

The discrete Chebyshev coefficients, an, are defined by

an =
2

N

1

cn

N∑

n=0

u(xj)Tn(xj)

cj

where cj =





2 when j = 0, N

1 otherwise.
(6)
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Derivatives of u at the collocation points are approximated by the derivative
of the interpolating polynomial evaluated at the collocation points. The first
derivative, for example, is defined by,

du

dx
=

N∑

n=0

a(1)
n Tn(x). (7)

Since a
(1)
N+1 = 0 and a

(1)
N = 0, the non-zero derivative coefficients can be

computed in decreasing order by the recurrence relation:

cna(1)
n = a

(1)
n+2 + 2(n + 1)an+1, n = N − 1, ..., 1, 0. (8)

The transform pair given by equations (5) or (7) and (6) can be efficiently com-
puted by a fast cosine transform. Equivalently, the interpolating polynomial
and its derivatives can be computed in physical space using matrix multipli-
cation. Special properties of the Chebyshev basis allow for differentiation via
parity matrix multiplication [12] (even-odd decomposition [13]), which can be
performed by using slightly more than half as many floating point operations
as standard matrix multiplication.

More detailed information may be found in the standard references [14–19].

After the spectral evaluation of spatial derivatives, the system of ordinary
differential equations

du

dt
= F (u, t)

results, where u is the vector containing the unknown PDE solution at the
collocation points. The system is typically integrated by a second, third, or
fourth order explicit Runge-Kutta method to advance the solution in time.

A coordinate transformation may be necessary either to map a computational
interval to [a, b] from the interval [−1, 1] or to redistribute the collocation
points within an interval for the purpose of giving high resolution to regions
of very rapid change. Perhaps, the most popular map used to redistribute the
CGL points (3) is the Kosloff/Tal-Ezer map [20]

x = g(ξ, γ) =
arcsin(γξ)

arcsin(γ)
. (9)

If ξ denotes the original variable and x = g(ξ) the new variable, then dif-
ferentiation of a function u(x) is accomplished by making use of the chain
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rule,

du

dx
=

dξ

dx

du

dξ
=

1

g′(ξ)
du

dξ
, (10)

after a change of variable has been made.

3 Edge Detection

The Gegenbauer Reconstruction Procedure (GRP) recovers spectral accuracy
up to the discontinuity points in each smooth subinterval of a piecewise ana-
lytic function. Thus, the GRP needs the exact location of discontinuities, or
edges, in the function. The method used to find the edges originated in [8] for
periodic and non-periodic functions. The method is specialized to approxima-
tions of functions by Chebyshev methods and is summarized below.

Denote the location of discontinuities as αj. Let

[f ](x) := f(x+)− f(x−)

denote a local jump in the function and define

ue(x) =
π
√

1− x2

N

N∑

k=0

ak
d

dx
Tk(x) (11)

where

d

dx
Tk(x) =

k sin(k arccos(x))√
1− x2

.

Essentially, we are looking at the derivative of the spectral projection of the
numerical solution to determine the location of the discontinuities. The series
ue(x) has the convergence properties

ue(x) →




O
(

1
N

)
when x 6= αj

[f ] (αj) when x = αj.

The series converges to both the height and direction of the jump at the
location of a discontinuity. However, for the GRP, we only need the magnitude
of the jumps. While a graphical examination of the series ue(x) verifies that

6



the series does have the desired convergence properties, an additional step is
needed to numerically pinpoint the location of the discontinuities. For that
purpose, make a non-linear enhancement to the edge series as

un(x) = N
Q
2 [ue(x)]Q

The values, un(x), will serve to amplify the separation of scales which has
taken place in (11). The series has the convergence properties

un(x) →




O
(
N

−Q
2

)
when x 6= αj

N
Q
2 [[f ] (αj)]

Q when x = αj.

By choosing Q > 1 we enhance the separation between the O([ 1
N

]
Q
2 ) points of

smoothness and the O(N
Q
2 ) points of discontinuity. The parameter J , whose

value will be problem dependent, is a critical threshold value. Finally, redefine
ue(x) as

ue(x) =





ue(x) if un(x) > J

0 otherwise.

With Q large enough, one ends up with an edge detector ue(x) = 0 at all x
except at the discontinuities x = αj. Only those edges with amplitude larger

than J1/Q
√

1/N will be detected.

Often the series ue is slow to converge in the area of a discontinuity and the
nonlinear enhancement has a difficulty pinpointing the exact location of the
edge. If an additional parameter, η, is added to the procedure this problem can
be overcome in a simple manner. The parameter specifies that only one edge
may be located in the interval (x[i−η], x[i+η]), i = 0, ..., N , with appropriate
one sided intervals being considered near boundaries. The correct edge will be
the maximum of ue in this subinterval. The value of η is problem dependent
and is best chosen after the edge detection procedure has been applied once.

The edge detection parameters J , Q, and η, are all problem dependent. Vari-
ous combinations of the parameters may be used to successfully locate edges
represented by jumps of magnitude in a certain range.
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4 Gegenbauer Postprocessing

The truncation error decays exponentially as N increases when spectral meth-
ods are used to approximate smooth functions. However, the situation changes
when the function is discontinuous as the spectral approximation no longer
converges in the maximum norm. This is known as the Gibbs-Wilbraham phe-
nomenon. Several methods exist for removing or reducing the effects of the
Gibbs-Wilbraham phenomenon from spectral approximations. Most however,
such as spectral mollification [21], [22], only recover spectral accuracy up to
within a neighborhood of each discontinuity. To date, one of the most promis-
ing processing method is the Gegenbauer Reconstruction Procedure (GRP).
The GRP is capable of recovering spectral accuracy up to and including at the
location of discontinuities. It should be noted that the postprocessing method
need only be applied at time levels at which a ”clean” solution is desired, and
not at every time step.

The GRP was developed in [23], [11], [24], [10], and [25] for the purpose of
recovering exponential accuracy at all points, including at the discontinuities
themselves, from the knowledge of a spectral partial sum of a discontinuous,
but piecewise analytic function.

The GRP works by expanding the function in another basis, the Gibbs com-
plementary basis, via knowledge of the known Chebyshev coefficients and the
location of discontinuities. The Chebyshev partial sums are projected onto a
space spanned by the Gegenbauer polynomials. The associated weight func-
tions increasingly emphasize information away from the discontinuities as the
number of included modes grow. The approximation converges exponentially
in the new basis even though it only converged very slowly in the original
basis due to the Gibbs-Wilbraham phenomenon. The choice of a Gibbs com-
plementary basis is the Ultraspherical or Gegenbauer polynomials, Cλ

n . The
Gegenbauer polynomials are orthogonal polynomials of order n which satisfy

1∫

−1

(1− x2)λ−1/2Cλ
k (x)Cλ

n(x)dx =





hλ
n k = n

0 k 6= n

where (for λ > 0)

hλ
n = π

1
2 Cλ

n(1)
Γ(λ + 1

2
)

Γ(λ)(n + λ)
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with

Cλ
n(1) =

Γ(n + 2λ)

n!Γ(2λ)
.

Whether the Gegenbauer basis is the optimal choice as the Gibbs complemen-
tary basis for the Chebyshev basis remains an open question. It is shown in [11]
that the Gegenbauer basis is a Gibbs complementary basis for the Chebyshev
basis.

The Gegenbauer expansion of a function u(x), x ∈ [−1, 1] is

u(x) =
∞∑

l=0

f̂λ
l Cλ

l (x)

where the continuous Gegenbauer coefficients, f̂λ
l , of u(x) are

f̂λ
l =

1

hλ
l

1∫

−1

(
1− x2

)λ−1/2
Cλ

l (x)u(x)dx (12)

Since we do not know the function u(x), implementing the GRP requires ob-
taining an exponentially accurate approximation, ĝλ

l , to the first m coefficients
f̂λ

l in the Gegenbauer expansion from the first N + 1 Chebyshev coefficients
of u(x). The approximate Gegenbauer coefficients are defined as the integral

ĝλ
l =

1

hλ
l

1∫

−1

(
1− x2

)λ−1/2
Cλ

l (x)uN(x)dx (13)

where uN is the Chebyshev partial sum (5). The integral should be evaluated
by Gauss-Lobatto quadrature in order to insure sufficient accuracy. The co-
efficients ĝλ

l are now used in the partial Gegenbauer sum to approximate the
original function as

u(x) ≈ uλ
m(x) =

m∑

l=0

ĝλ
l Cλ

l (x)

In practice, there will be discontinuities in the interval [−1, 1] and the re-
construction must be done on each subinterval [a, b] in which the solution
remains smooth. To accomplish the reconstruction on each subinterval, define
a local variable for each subinterval as x(ξ) = εξ + δ where ε = (b − a)/2,
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δ = (b + a)/2 and ξj = cos(πj/N). The reconstruction in each subinterval is
then accomplished by

uλ,ε
m (εξ + δ) =

m∑

l=0

ĝλ
ε (l)Cλ

l (ξ)

where

ĝλ
ε (l) =

1

hλ
l

−1∫

1

(1− ξ2)λ−1/2Cλ
l (ξ)uN(εξ + δ)dξ.

Notice that we have used collocation points on the entire interval [−1, 1] to
build the approximation in [a, b]. This is referred to as a global-local approach
[25]. The global-local approach seems to be best when postprocessing PDE
solutions where uN is obtained from the time evolution. The point values
u(xi) may not be accurate, but the global interpolating polynomial uN(x) is
accurate.

In order to show that the GRP yields uniform exponential accuracy for the
approximation, it is necessary to select λ and m such that λ = m = βεN ,
where β < 2e/(27(1+1/2p)), and p is the distance from [−1, 1] to the nearest
singularity in the complex plane, in each subinterval where the function being
reconstructed is assumed to be analytic [11]. It is not necessary, and usually
not advisable, to choose λ = m. In practice, this condition can be violated
and good results can still be obtained.

If the function to be postprocessed consists homogeneous features, the recon-
struction parameters can be successfully chosen as λ = kλεN and m = kmεN
for each subinterval where kλ and km are user chosen, globally applied param-
eters. We refer to this strategy as the global approach.

In the numerical examples the solutions consist of homogeneous features as
all solutions are either piecewise constant or piecewise linear. This allows the
global approach to choosing the reconstruction parameters to be used which
indicates that the problems are particularly well suited to be postprocessed
by the GRP. This is because the global approach is currently the easiest and
most robust way to apply the method. However, in problems with solutions
with varying detail throughout the computational domain, the reconstruction
parameters may need to be chosen independently in each subinterval [26].
We refer to this strategy as the local approach. To date there is no known
method to choose optimal values of the reconstruction parameters m and
λ. The parameters remain very problem dependent. Work is under way on
choosing optimal parameters and results will be reported in a future paper.
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5 Numerical Examples

In the numerical examples the postprocessing was done with the Spectral
Signal Processing [27] suite. We have chosen two linear examples with ex-
act analytical solutions available. However, the numerical methods apply to
nonlinear problems equally as well.

Both examples used the initial conditions T (x, 0) = 0 and Q(x, t) = 0 for x ∈
[0, 1]. The first example uses boundary conditions of Q(0, t) = 1, Q(1, t) = 0,
Tt(0, t) = −Qx(0, t), and Tx(1, t) = 0 with the energy generation rate, S, set
to zero.

In the figure 1, the temperature solution, T , is shown at time t = 0.5 with
N = 33 CGL grid points (3). The solution was advanced in time with a fourth
order Runge-Kutta method and a time step of ∆t = 0.001. Strong oscillations
are noticeable at the boundary x = 0, due to the jump in the heat flux, Q
,which is felt by the temperature.

An edge is found to be at x = 0.476 with the parameters J = 200, Q = 4,
and η = 2. This choice of edge detection parameters results in jumps of 0.65
and larger being located. The exact jump is 0.65 in magnitude. By specifying
η = 2, the oscillation near x = 0 is not falsely determined to be a jump in the
function. With only 33 grid points, the convergence of the edge series, figure
2, is not yet readily apparent, however, if the edge detection parameters are
chosen appropriately, the correct edge locations will be found.

After the edges have been located, the GRP is applied in each smooth subin-
terval with by using global parameters chosen as kλ = 0.3 and km = 0.1 which
results in m = 2 and λ = 4.7 in subinterval (0, 0.476) and m = 2 and λ = 5.2
in subinterval (0.476, 1).

After postprocessing (figure 3) the numerical and exact solutions are virtually
identical. The pointwise error between the exact and postprocessed solution
is shown in figure 4 where the maximum pointwise error is less than 0.00045.
Only 1/30 of the grid points are necessary to obtain results superior to those
obtained in [2] with MacCormack’s method. Figure 5 displays the MacCor-
mack’s method solution of the first example with N = 1000 and a small
time step. Despite using substantially more grid points the solution is still
oscillatory around the steep front due mainly to phase speed errors. Spectral
methods give accurate phase speeds for all modes, while second order finite
difference methods typically only resolve first few modes accurately [28]. Un-
like the spectral solution, there is no known postprocessing technique which
is capable of recovering second order accuracy over the entire computational
domain of the finite difference approximation.
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The second example uses boundary conditions of Q(0, t) = 0, Q(1, t) = 0,
Tx(0, t) = 0, and Tx(1, t) = 0, with the energy generation rate specified as
S(x, t) = 1

dn
if 0 ≤ x ≤ dn and zero otherwise. The energy generation rate,

S, represents a pulsed energy source released instantaneously at time t = 0.
Such an energy source could model the application of a strong laser pulse
at the boundary of an absorbing medium encountered in the annealing of
semiconductors.

The temperature solution with dn = 0.05 is shown at time t = 0.5 with N = 99
grid points distributed with the map (9) with γ = 0.96. By taking the map
parameter as γ = 0.96, the grid becomes closer to evenly spaced and better
resolution is realized in the center of the domain. The solution (figure 6) was
advanced in time with a fourth order Runge-Kutta method and a time step
of ∆t = 0.0005.

Edges, figure 7, are found to be at x = 0.447 and x = 0.541 with the param-
eters J = 5000, Q = 3, and η = 1. With these choices of the edge detection
parameters, only jumps of magnitude greater than 1.72 are found. Other com-
binations of J and Q could work equally as well.

After the edges have been located, the GRP is applied in each smooth subin-
terval by using the global parameters kλ = 0.2 and km = 0.02. The results are
shown in figure 8.

6 Conclusions

The Chebyshev collocation method in conjunction with the Gegenbauer re-
construction procedure can produce superior results with significantly fewer
grid points than previously applied finite difference and finite element methods
to problems of hyperbolic heat transfer. Additionally, the results are achieved
without any artificial viscosity being used. The techniques used in this paper
can be applied to problems in higher dimensions where the storage savings
would be even greater.
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Fig. 1. spectral (solid) vs. exact
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Fig. 2. enhancement and edge series (solid)
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Fig. 3. postprocessed (solid) vs. exact
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Fig. 4. pointwise error, |postprocessed− exact|
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Fig. 5. Problem 1: MacCormack’s (solid) vs. exact

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6. spectral (solid) and exact
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Fig. 7. enhancement (solid) and edge series
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