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Conclusions
• The Rabinovich-Fabrikant equations are difficult to study

numerically.

• Local Iterative Linearization and Runge-Kutta methods
are comparable for these equations

• Robust numerical methods for the approximation of chaotic
dynamical systems do not exist

• Research directions for developing more effective nu-
merical methods include:

– Extended precision computing
– Experimentation with different methods
– Investing in new computer architectures that efficiently

perform extended precision floating-point arithmetic
– Developing higher-order (more accurate) algorithms

for existing computer architecture

• Better-suited methods discovered in the future can be
applied to other chaotic equations

• Chaotic systems of differential equations that model im-
portant real world events do not have analytical solu-
tions. It is imperative that reliable numerical methods
be developed that give approximate solutions that can
be used with confidence.

Runge-Kutta: a = 0.1, b = 0.14
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LIL: a = 0.1, b = 0.14
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Runge-Kutta: a = 0.1, b = 0.05
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Local iterative linearization:
a = 0.1, b = 0.05
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Sensitive dependence on initial
conditions
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x,y,z = 0.001
x,y,z = 0.0011

The Rabinovich-Fabrikant
equations

x′ = y(z − 1 + y2) + ax

y′ = x(3z + 1− x2) + ay

z′ = −2z(b + xy)

where a, b > 0 [6].

Local Iterative Linearization
method
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•Obscure

• Relatively few publications [3, 4, 5]

•More difficult to implement

Runge-Kutta method
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k1 = f(xn,xn)
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hk2)

k4 = f(xn + h,xn + hk3)

• Popular

•Well-documented [1, 2]

• Easy to implement

Chaos
•A property of some systems which change over time.

•Appears random but is not

• Important real-world applications:

– Weather
– Fluid dynamics
– Electrical circuits
– Chemical reactions
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