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Chaos

e A property of some systems which change over time.

e Appears random but is not

e Important real-world applications:

— Weather

— Fluid dynamics

— Electrical circuits
— Chemical reactions

Runge-Kutta method
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e Popular

e Well-documented [1, 2]

e Easy to implement

[.ocal Iterative Linearization
method
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e Obscure
e Relatively few publications [3, 4, 5]

e More difficult to implement
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The Rabinovich-Fabrikant
equations
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where a, b > 0 [6].

[Local iterative linearization:
a=0.1,b =0.05
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Sensitive dependence on 1nitial

conditions

X.y,Z = 0.001
x,y,z = 0.0011
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Runge-Kutta: a = 0.1, 0 = 0.05
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Conclusions

e The Rabinovich-Fabrikant equations are difficult to study
numerically.

e [Local Iterative Linearization and Runge-Kutta methods
are comparable for these equations

e Robust numerical methods for the approximation of chaotic
dynamical systems do not exist

e Research directions for developing more effective nu-
merical methods include:

— Extended precision computing
— Experimentation with different methods

— Investing in new computer architectures that efficiently
perform extended precision floating-point arithmetic

— Developing higher-order (more accurate) algorithms
for existing computer architecture

e Better-suited methods discovered in the future can be
applied to other chaotic equations

e Chaotic systems of differential equations that model 1m-
portant real world events do not have analytical solu-
tions. It 1s imperative that reliable numerical methods
be developed that give approximate solutions that can
be used with confidence.
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