

Initial Value Problem

• Our goal is to solve the initial value problem

y' = F(t, y(t)); $y(0) = y^0$

by numerical approximation using the Leapfrog Method

Linear Multistep Method: Leapfrog

• A general form for s-step linear multi-step methods will have the form

$$\sum_{m=0}^{s} \alpha_m y^{n+m} = k \sum_{m=0}^{s} \beta_m F[t^{n+m}, y^{n+m}], n = 0, 1, \dots$$

- Other methods, such as Euler's method, must be used to calculate the first s - 1 steps
- The **Leapfrog Method** is given by the formula

$$y^{n+1} = y^{n-1} + 2kF(t^n, y^n)$$

• Well known for its applications in science, engineering, weather forecasting, etc

Stability of Leapfrog Method

- Stability is concerned with preventing errors in previous steps from being magnified in subsequent calculations
- The absolute stability region for Leapfrog Method is only the interval [-i, i] in the complex plane
- This limits applicability and correctness [Figure 1]
- We use filtering to expand the absolute stability region
- We consider a filter of the form

$$P(E) = \sum_{j=-r_1}^{r_2} a_j E^j$$

[Aluthge]

• E is the forward shift defined by Ey(t) = y(t+k), where k is the step length

2, and thus

$$P_5^{(0)}(E) = a_{-2}E^{-2} + a_{-1}E^{-1} + a_0E^0 + a_1E^1 + a_2E^2$$

Filtered Leapfrog Time Integration with Enhanced Stability Properties

Roger Estep, Scott Sarra, Ariyadasa Aluthge, Andrew Reinhart Department of Mathematics, Marshall University

Construction of the Filter

• We will construct a five-point, symmetric filter with $r_1, r_2 =$

• We construct the filter with the condition $P(e^s) = 1 + 1$ $\mathcal{O}(s^3)$ and $P(-e^{-s}) = \mathcal{O}(s^2)$ and solve the resulting linear system to obtain the filter

$$E) = \frac{1}{16}(-E^{-2} + 4E^{-1} + 10E^{0} + 4E^{1} - E^{2})$$

Figure 1: The real solution of our IVP (red, dashed) versus our computed solution under Leapfrog (blue, solid)

New Linear Multistep Method

• The $P_5^{(0)}$ filter can be incorporated resulting in the new LMM

$$y^{n+1} = \frac{1}{16}(-y^{n-3} + 4y^{n-2} + 4$$

$$+2kF(t^n, y^n)$$

• This method is zero-stable, while still maintaining the second order accuracy of the leapfrog method.

Figure 2: The Absolute Stability Region under the filter

Figure 3: A graphic example of weather forecasting

 $+10y^{n-1}+4y^n-[y^{n-1}+2kF(t^n,y^n)])$

Application of the Filter

- To advance from the initial condition y^0 to the first time step y^1 , M smaller substeps are taken using M Euler steps and M - 1 Leapfrog Steps.
- Each step y^n is replaced with an average of y^n with the neighboring time levels
- This process is restarted after C timestep evaluations, at which y^C becomes the initial condition
- Resulting absolute stability region covers [-.95i, .95i], but expands horizontally within the complex plane [Figure 2]

Numerical Examples

	t = 5	t = 25	t = 100
leapfrog	4.2e-6	3.0	∞
$P_{3}^{(0)}$ LMM	2.9e-5	0	0
$P_5^{(0)}$ LMM	4.2e-6	3.3e-16	3.3e-16
M 1	1.3e-6	2.2e-16	2.2e-16
M2	7.8e-5	0	0
M3	1.7e-7	0	0
M4	2.6e-6	0	0
$A_{\text{sym}} P^{(-2)} M2$	1 50 5	2 20 16	2 20 16

NIZ | 4.36-3 | 2.26-10 | 2.26-10Note: We define M1 as the method of filtering after every step,

M2 as the process of filtering after every N steps,

M3 as the process of taking smaller, Euler substeps to reach the first step, then proceeding like M2, M4 as the method discussed in the Application of Filter section

Application

The Leapfrog Method is considered an important tool for numerical weather forecasting [Coiffier]. However, the limited absolute stability region can cause important error for eigenvalues that do not fall in this narrow strip. The described method is a potential replacement for existing leapfrog type time differencing schemes that are used in this style of weather forecasting.

Bibliography

- A. Aluthge (aka A. Ariyadasa). Filtering and extrapolation techniques in the numerical solution of ordinary differential equations. Masters thesis, University of Ottawa, 1985.
- J. Coiffier. Fundamentals of Numerical Weather Prediction. Cambridge University Press, 2011.

