

Introduction

• RBFs first studied by Roland Hardy - 1968

$$s(x) = \sum_{j=1}^{N} \lambda_j \phi(\parallel x - x_j^c \parallel_2, \epsilon)$$

- Allow for scattered data sites to be easily used in computations
- Used to represent topographical surfaces and other 3-D shapes – Facial recognition
- Ocean floor mapping
- Medical applications

The most popular RBF that is used in applications today is the Multiquadric (MQ)

$$\phi(r) = \sqrt{1 + \varepsilon^2 r^2} = (1 + \varepsilon^2 r^2)^{1/2}$$

– Properties of the MQ are well-known [2]

A related RBF with properties not as well-known is the Generalized Multiquadric (GMQ)

$$\phi(r) = (1 + \varepsilon^2 r^2)^{\beta}$$
 $\beta = \cdots \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}, \frac{3}{2} \cdots$

- Researchers have recently suggested, but not proven, that the GMQ has desirable properties for β with non-halfinteger powers.

GMQ - Suggested Values for β

- Wang and Liu [3]: $\beta = 1.03$
- Xaio and McCarthy [4]: $\beta = 1.99$
- Kansa [1]: $\beta = 5/2$

Which value is best?

Two test functions:

$$f(x) = e^{x^3} + \cos(2x)$$
 (1)

$$f(x) = x^4 + 3x^2 - x - 2,$$
 (2)

Results:

- No optimal shape parameter was found for the six values of β
- As beta increases the shape parameters increase
- $\beta = 2.5$ provided the best results for the second function, but $\beta = 1.99$ provided the best results for the first function
- β is problem dependent

Radial Basis Function Approximation Methods

Maggie E. Chenoweth

Department of Mathematics, Marshall University

RBF Reconstruction of Ventricular Surface

Function Generated Using GMQ Interpolation

Extended Precision

RBF methods can be accurately and efficiently evaluated using extended precision floating point arithmetic

- Implemented using computer software instead of hardware
- Takes more computation time
- Provides better accuracy

Comparison of Floating Point Types				
type	bits	р	dps	exec time
double	64	53	16	1
double-double	128	106	32	10
quad-double	256	212	64	100

p = bits in decimal section

dps = accurate decimal places

Using the following function

$$f(x) = e^{\sin(\pi x)} \tag{3}$$

we found that the 256 quad-double appears to be best

Summary

- Optimal values for β are problem dependent
- Extended precision adds accuracy to RBF methods
- Multi-core architecture of modern computers
- Domain decomposition approaches

Acknowledgements

Special thanks to my research advisor, Dr. Scott Sarra. Support for this project was provided in part by the NASA West Virginia Space Grant Undergraduate Fellowship Program.

References

- [1] E. J. Kansa. Numerical simulation of two-dimensional combustion using mesh-free methods. Engineering Analysis with Boundary Elements, 2009.
- [2] S. Sarra. Radial basis function interpolation. *Submitted to* SIURO, 2009.
- [3] J. G. Wang and G. R. Liu. On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Meth. Appl. Mech. Eng., 191:2611–2630, 2002.
- [4] J. R. Xaio and M. A. McCarthy. A local heaviside weighted meshless method for two-dimensional solids using radial basis functions. Computational Mechanics, 31:301–315, 2003.

