
Quadrature Methods for Numerical Integration
Undergraduate Capstone Research Project Marshall University Fall 2017

Dillon Buskirk Advisor: Dr. Scott Sarra

Introduction
Numerical integration is necessary for many

different integrals. An example of this is when
an integrand, such as f (x) = ex2

, can not be ex-
pressed in the form of an elementary function
on a given interval. Quadrature methods use the
equation

IN( f ) =
N

∑
j=0

ωj f (xj)

to numerically approximate the integral as the
sum of quadrature weights times the integrand
evaluated at N different quadrature points xj.

I look at two different methods of numer-
ical integration on the interval [−1, 1]: Gaus-
sian quadrature and Clenshaw-Curtis quadrature.
Gaussian quadrature has the highest degree
of polynomial accuracy out of any quadrature
method and can exactly integrate polynomials
of degree up to 2N + 1.

Clenshaw-Curtis has a degree of accuracy al-
most half of that of Gaussian (N + 1). My goal
is to use each method to evaluate different in-
tegrals used by Trefethen and determine if this
“factor-of-two” advantage of Gaussian quadra-
ture is as considerable as it sounds.3

Orthogonal Polynomials
The quadrature points (xj) are obtained from or-
thogonal polynomials, the Legendre Polynomial and
Chebyshev Polynomial. These have three term re-
cursion relationships.

Let pk(x)n
k=0 be a set of orthogonal polynomi-

als. Since they are orthogonal, taking the inner
product gives us the relation. . .∫ b

a
w(x)pm(x)pn(x)dx = δmncn

where. . .

δmn =

{
1 n = m
0 n 6= m

Gaussian Quadrature
Gaussian quadrature uses the zeros of the Leg-
endre polynomial for its quadrature points. In-
stead of calculating the zeros of the Legendre
polynomial implicitly, they can be found by
solving a tridiagonal eigenvalue problem.

The relationship between the quadrature
points and eigenvalues, and weights and eigen-
vectors is discussed by Trefethen.5 Below is the
Matlab code implementing the (N + 1) point
Gaussian quadrature of an integrand f .3

function I = gauss(f,n)
beta = .5./sqrt(1-(2*(1:n)).^(-2)); %3TRR
T = diag(beta,1) + diag(beta,-1); %Jacobi
[V,D] = eig(T); % eigen decomp.
x = diag(D); [x,i] = sort(x); % nodes
w = 2*V(1,i).^2; %weights
I = w*feval(f,x); %the integral

Figures 1 compares the error of the two quadra-
ture methods for increasing number of quadra-
ture points. For the integrand of the simple
polynomial function in Figure 1, the 2N + 1 ad-
vantage of Gaussian quadrature is obvious since
the 20th order polynomial is approximated to
machine precision with 9 quadrature points.
However, integrals requiring numerical meth-
ods to evaluate are not usually so basic.

0 5 10 15 20 25 30
N

10-15

10-10

10-5

100

|e
rro
r|

Gauss
Clenshaw-Curtis

Figure 1: Error convergence for f (x) = x20.

Clenshaw–Curtis Quadrature
Clenshaw-Curtis quadrature uses Chebyshev-
Gauss-Lobatto (CGL) points for its quadrature
points. These are the extrema and endpoints of
the Chebyshev polynomial. This approximation
becomes the sum of the product of the Cheby-
shev coefficients4 and the quadrature weights.2

Using a Fast Fourier Transform when solving
for the expansion coefficients reduces the com-
putational cost of this implementation. Using
the built in Fast Cosine Transform in Python,
quicker results could be obtained. Below is
the code implementing (N + 1) point Clenshaw-
Curtis quadrature on an integrand f .3

function I = clenshaw_curtis(f,n)
x = cos(pi*(0:n)'/n); %CGL points
fx = feval(f,x)/(2*n); %f evaluated
g = real(fft(fx([1:n+1 n:-1:2]))); %FFT
%Cheby Coeff.
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)];
%weight vector
w = 0*a'; w(1:2:end) = 2./(1-(0:2:n).^2);
I = w*a; %the integral

In Figure 2, both quadrature methods have
similar error curves and the “factor-of-two” ad-
vantage is not evident for this integral with a
non-polynomial integrand.

0 5 10 15 20 25 30
N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|e
rro
r|

Gauss
Clenshaw-Curtis

Figure 2: Error convergence for f (x) = 1
(1+16x2)

.

Results
Nearly all of the integrands in the Trefethen pa-
per gave error curves that were similar for each
quadrature method and the “factor-of-two” ad-
vantage proved to be fallacious. Each quadra-
ture method is too complex to be judged only by
their degree of polynomial accuracy and saying
there is a “factor-of-two” advantage is mislead-
ing.

Since each quadrature method’s accuracy was
nearly the same, computational efficiency is nec-
essary to take into consideration. In Figure
3, as N becomes large, the computational ad-
vantage of Clenshaw-Curtis quadrature is enor-
mous. The integrand used to compare the times
was used due to the accuracy of each implemen-
tation being near identical.1

100 101 102 103 104

N

10-4

10-3

10-2

10-1

100

101

tim
e

Gauss

Clenshaw-Curtis

Figure 3: Averaged computation time.

References

[1] C. W. Clenshaw and A. R. Curtis, A method for numerical integration
on an automatic computer, Numerische Mathematik 2 (1960), no. 1,
197–205.

[2] Scott A. Sarra, Numerical analysis and scientific computing with
Python, Matlab, and C++, 2017, unpublished notes.

[3] Lloyd N. Trefethen, Is Gauss quadrature better than
Clenshaw–Curtis?, SIAM Review 50 (2008), no. 1, 67–87.

[4] , Approximation theory and approximation practice, Society for
Industrial and Applied Mathematics, 2012.

[5] Lloyd N. Trefethen and David Bau III, Numerical linear algebra,
SIAM: Society for Industrial and Applied Mathematics, 1997.


