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Floating Point Number Systems

Floating point representation is based on scientific
notation, where a nonzero real decimal number, x,
is expressed as x = ±S × 10E, where 1 ≤ S < 10.
The values of S and E are known as the significand
and exponent, respectively. When discussing float-
ing points, we are interested in the computer repre-
sentation of numbers, so we must consider base 2, or
binary, rather than base 10. Thus, a non-zero num-
ber, x, is written in the form, x = ±S × 2E, where
1 ≤ S < 2. It follows, then, that the binary expan-
sion of the significand is given by S = (b0.b1b2b3...)2,
with b0 = 1. Consider x = 7.0. Then, in a floating
point system, we might have x = 1.75× 22.

IEEE Double Standard

The ANSI/IEEE std 754 defines the double floating
point format used in virtually all microprocessors.
•Double values use a 64-bit word, with one bit
reserved for the sign, 11 for the exponent, and 52
for the significand.

•The exponent field is stored using biased
representation, meaning that the value of the
exponent B is stored as E + B, where B is the
exponent bias, which is 1023 for double precision.

•The 52-bit binary significand allows for about 16
decimal places of precision.

Sample Conversion

Let us convert x = 4.5 into an IEEE double. The
sign is positive, so the sign bit is 0. We use division
to find that x/22 = 1.125, giving us an exponent of
2. Using biased representation, this value is stored
as 1025, which has a binary string of 10000000001.
The decimal portion of .125 is converted to binary
using the Repeated Multiply-by-2 method, append-
ing the value left of the decimal point to the frac-
tional part at each stage, until we reach the exact
value or the limit of the length of the significand.
Thus, the double precision value is given by:

Sign Exponent Mantissa
0 10000000001 0010000000 . . .

Precision

•The precision, p, of a floating point number
system is the number of bits in the significand.

•This means that any normalized floating point
number with precision p can be written as:

x = ±(1.b1b2...bp−2bp−1)2 × 2E

•The smallest x such that x > 1 is then:
(1.00...01)2 = 1 + 2−(p−1)

•The gap between this number and 1 is called
machine epsilon, which we can write as:

εm = (0.00...01)2 = 2−(p−1)

•Let xc be a floating point representation of a real
number, x. Then the absolute error of xc is given
by |xc − x|. Its relative error is given by |xc−x||x| .

•The maximum value of the rounding error for a
binary floating point representation is equal to εm

2 .

Format Precision Machine Epsilon
Single p = 24 εm = 2−23 ≈ 1.2 ∗ 10−7

Double p = 53 εm = 2−52 ≈ 2.2 ∗ 10−16

Table 1: Precision of Floating Point Formats

Extended Precision

An increasing number of problems exist for which
IEEE double is insufficient. These include modeling
of dynamical systems such as our solar system or the
climate, and numerical cryptography. Several arbi-
trary precision libraries have been developed, but
are too slow to be practical for many complex ap-
plications. David Bailey’s QD library may be used
in applications where two or four times double pre-
cision is sufficient. Though much faster than ar-
bitrary precision, the fact that these algorithms are
implemented in software still forces them to be much
slower than double calculations. The table below
displays a time comparison among double, double-
double, and quad-double calculations for the basic
arithmetic operators, with the data normalized so
that the times for doubles represent one time unit.

Type Add. Sub. Mult. Div.
Double 1 1 1 1
Double-Double 21.45 11.87 13.83 15.53
Quad-Double 70.22 74.10 120.21 129.11

Table 2: Times Required for Arithmetic Operations with Data
Normalized so that Double Precision is 1 Unit For Each Operator

Solutions of Chaotic Lorenz Equations

Chaotic systems are those which are highly sensitive to changes in initial conditions.. We seek time-step
independent solutions to the chaotic Lorenz equations:

x′ = σ(y − x),
y′ = rx− y − xz,
z′ = −bz + xy,

x(0) = x0,

y(0) = y0,

z(0) = z0.

(1)

We performed the experiment with step sizes ∆t1 = 1 × 10−6 and ∆t2 = 1 × 10−7. Figure 1 shows
the resulting x-values of the solutions calculated in double precision, with the blue line representing the
solutions found using ∆t1, and the green line using ∆t2. The solutions visually diverge around t = 42.
Figure 2 represents the same calculation performed in double-double precision. Here, the solutions do not
visually diverge for t ≤ 50.

Figure 1: Solutions in double precision. Figure 2: Solutions in double-double precision.

Patriot Missile Failure

Patriot missile defense modules have been used by
the U.S. Army since the mid-1960s. On February 21,
1991, a Patriot protecting an Army barracks in Dha-
ran, Afghanistan failed to intercept a SCUD missile,
leading to the death of 28 Americans. This failure
was caused by floating point rounding error. The
system measured time in tenths of seconds, using
only 24-bit registers. The algorithms employed by
the Patriot were implemented in a way that allowed
the rounding error for the time to compound over
time. When the Dharan system failed, it had been
left on for about 100 hours.

Conclusion/Future Work

Extended precision offers a solution for many prob-
lems in numerical mathematics that suffer from the
rounding error in IEEE double. However, that solu-
tion comes at the cost of efficiency. Modern Graph-
ics Processing Units (GPUs) offer thousands of cores
which can be highly advantageous for parallelizable
algorithms. A parallel implementation of the QD
library known as GQD was published in 2010, but
abandoned shortly after. In the future, we hope to
implement the QD algorithms in OpenCL for exe-
cution across GPUs and other highly parallel plat-
forms.
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