
A Comparison of two 4th-Order Numerical

Ordinary Differential Equation Methods Applied

to the Rabinovich-Fabrikant Equations

Clyde Meador
Marshall University

Email: meador16@marshall.edu

Advisor: Scott Sarra
Marshall University

Email: sarra@marshall.edu

November 29, 2009

Abstract

The Rabinovich-Fabrikant system is a chaotic system of nonlinear ordi-
nary differential equations in three dimensions. Using the Local Iterative
Linearization method and a Runge-Kutta method (both of fourth order
and identical step-size) phase plots are generated and compared. Issues
concerning the numerical approximation of chaotic systems are explored.

1 Introduction

The Rabinovich-Fabrikant system [1] (hereafter, the RF system) is a chaotic
dynamical system of three ordinary differential equations (ODEs) in three vari-
ables and two constant parameters, as follows:

x′ = y(z − 1 + y2) + ax

y′ = x(3z + 1 − x2) + ay

z′ = −2z(b + xy)

where the constant parameters a, b > 0. The RF system models self-modulation
of waves in nonequilibrium media (specifically, dissipative media). For more
information on the physics of the RF system, consult [1]. Later in the numerical
experiments we will see that the set of parameters (a, b) has dramatic effects
on the behavior of the system. This system is lesser known than others such
as the Rössler and Lorenz systems [2, 3], but there is numerical research in
the literature for the RF system. Additionally, statistical evidence that the RF
system is chaotic was published by Luo et al in [4]. Much published numerical
research of the RF system uses an algorithm called Local Iterative Linearization
(LIL) for numerical integration of the system [4, 5, 6]. In this paper, 4th order
LIL and Runge-Kutta (RK) methods of identical step-size are implemented in
the MATLAB computing environment.

1

1.1 Chaos and other concepts

Some of the terms and concepts used in this paper may be unfamiliar to those
who have not yet taken courses in numerical analysis or differential equations,
so a brief overview of some concepts in the numerical study of chaos follows.

A dynamical system is a system whose state evolves according to a fixed,
deterministic rule. A nonlinear equation has powers and functions of x other
than x1 and x0. Chaos receives a working definition from Devaney [7] in three
parts:
1) The system has the famous property of sensitive dependence on initial con-
ditions, that is: there exists a δ > 0 such that if you pick an point x0 and a
neighborhood around x0, there is a point x1 in that neighborhood such that the
orbits of x0 and x1 will eventually separate by δ.
2) The system is topologically mixing - if you pick two open subsets of the do-
main, the orbit of one set will eventually intersect the other.
3) The system has dense periodic orbits - for any point in the domain and any
neighborhood N of that point, there is at least one point from a periodic orbit
in N .

2 Numerical methods for solving x′ = f(x)

Numerical methods for differential equations are used to generate close approx-
imations to the exact solution of problems which are difficult or impossible to
solve analytically. They are essential to examine behavior of chaotic systems.
Next we introduce Euler’s method in order to later illustrate some key concepts.
Afterward we describe the LIL and RK methods.

2.1 Euler’s method

Euler’s method is the following:

xn+1 = xn + hf(xn) n = 0, 1, 2, ... (1)

where h is the timestep.
Beginning with an initial condition x0 at time t0, we move forward repeatedly

by timestep h. Euler’s method is based on the Taylor expansion of xn+1, as
shown below:

x(tn+1) = x(tn + h) = x(tn) + hx′(tn) +
1

2
h2x′′(tn) + O(h3) (2)

where O(h3) indicates the remainder of the series expansion. As h approaches
zero, O(h3) is no larger than Kh3 for some fixed K.

Euler’s method uses the first two terms of the Taylor expansion of xn+1.

Therefore, the truncation error of Euler’s method is the difference between the
numerical result and the value of the exact expansion, or:

2

1

2
h2y′′(tn) + O(h3). (3)

2.2 Local Iterative Linearization

As described in [5], the 4th-order Local Iterative Linearization method is:

xn = 2xn−1 −
8

5
xn−2 +

26

35
xn−3 −

1

7
xn−4 +

h

12600
(6463f(xn) − 2092f(xn−1) + 2298f(xn−2) − 1132f(xn−3) + 223f(xn−4))

where n = 4, 5, 6, As LIL is a multistep method, four previous values of
the vector xi and the function evaluations fi = f(xi) (for i = 0, 1, 2, 3) are
necessary to begin implementation of LIL. Therefore, a 4th-order Runge-Kutta
method (see next section) was used to generate the three results succeeding the
initial conditions in order to begin using Local Iterative Linearization. This
makes implementation and analysis of this method more difficult than other
methods, as temporary use of another method is required. LIL is implemented
as a predictor-corrector method. The evaluation of f(xn) is an extrapolation,
which is then corrected by the other terms of the formula.

2.3 Runge-Kutta

“The most popular Runge-Kutta method” (RK4) is defined in [9] as follows:

xn+1 − xn =
h

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(xn)

k2 = f(xn +
1

2
hk1)

k3 = f(xn +
1

2
hk2)

k4 = f(xn + hk3)

This method gives fourth-order accuracy with only four evaluations of f, whereas
with Runge-Kutta methods that yield order higher than ρ = 4, the number of
evaluations of f is greater than ρ. RK4 has the advantage of being a one step
method: it does not require previous values, so one may go directly from tn to
tn+1 by taking multiple function evaluations within the step h.

3 Stability

The stability of a numerical method refers to the behavior and propagation of
errors. A method is considered stable if the eigenvalues of the Jacobian matrix
(which is constant for linear problems, but changes every step for nonlinear

3

problems) lie within the stability region of the method when scaled by h. Using
MATLAB and the information in Danca [5] and Butcher [10], stability plots
were generated for both numerical methods.

−4 −3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

re(λ ∆ t)

im
(λ

 ∆
 t)

(a) 4th-Order Runge-Kutta

−4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

re(λ ∆ t)

im
(λ

 ∆
 t)

(b) 4th-Order Local Iterative Linearization

Figure 1: Stability Regions

The 4th-order LIL method is implemented as a predictor-corrector method
and therefore has explicit (bounded) stability. It was stated in [5] that the
predictor-corrector implementation of this method has the same stability region
as the implicit method (Figure 1(b).) However, numerical experiments indicate
that this is not the case. A forthcoming paper will explore this in more detail
and give a complete analysis. The explicit 4th-order Runge-Kutta method is
stable for the area inside the plot in Figure 1(a). As can be seen in Figure 1
above, neither method is absolutely stable (including the entire left half-plane
in its stability region) as defined in [10].

3.1 Examining stability

Linear stability is a strong characteristic of numerical methods, but when study-
ing nonlinear systems, things are seldom so neat. Iserles [11] mentions a method
for attempting to translate “linear theory to a nonlinear setting,” while cau-
tioning that such is better than nothing, but worse than embracing nonlinear
properties from the outset. Nevertheless, this has been adopted here for illus-
trative purposes. A script was written in MATLAB to utilize the Runge-Kutta
method used throughout this paper, and plot the eigenvalues of the Jacobian
matrix of the RF system, scale them by the stepsize, and see whether they lie
within the linear stability region.

4

−4 −3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

re(λ ∆ t)

im
(λ

 ∆
 t)

Figure 2: Eigenvalues and stability region, using RK4 for a = 0.1, b = 0.05, t = 5

To illustrate what happens when methods become unstable, we selected the
parameter set a = 0.1, b = 0.05, which is (in our experience) stable for a step
size of h = 0.001. The step size was raised to h = 0.1 to better illustrate
instability. In Figure 2, at t = 5, one can notice scaled eigenvalues outside the
stability region (remember: since RK4 is explicit, the stability region is inside
the curve.)

5

−4 −3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

re(λ ∆ t)

im
(λ

 ∆
 t)

Figure 3: Eigenvalues and stability region, using RK4 for a = 0.1, b = 0.05, t =
83

Time t = 83 is the last time value for which our experimental setup could plot
the rapidly-growing numerical result. The eigenvalues of the Jacobian matrix
of the RF system had remained outside the stability region, and at this point
the method became unstable and the numerical solution grew without bound
(Figure 4.) The numerical errors could be growing without bound in this case. It
is also possible that the method is accurately modeling an unbounded analytic
solution. However, based on the eigenvalues exiting the stability region, we
believe the former to be more likely. It is also interesting to note here that
the eigenvalues in these two figures are practically indistinguishable, despite the
large time difference. However, close examination of Fig. 2 shows eigenvalues
not present in Fig. 3 which are very close to the boundary of the stability region.

6

0

5

10

x 10
257

−3
−2

−1
0

1

x 10
257

0

2

4

6

x 10
260

Figure 4: 3D phase plot of the RF equations using RK4 for a = 0.1, b = 0.05, h =
0.1

In Figure 4 is a phase plot of the system, illustrating the results of such unsta-
ble behavior. The numerical result grows without bound. If the corresponding
analytic solution is bounded, numerical integration no longer approximates the
behavior of the system.

4 Accuracy

When one discusses the order of accuracy (or more simply, order) ρ of a numer-
ical method, we are referring to the truncation error

Er = O(hρ+1). (4)

That is, the error is proportional to the stepsize h, taken to the power ρ+1.

Euler’s method (2,) a popular first-order numerical method, serves as a perfect
example to illustrate core properties of the order of a method.

The increasing powers of h in 3 indicate that O(h3) will have smaller bearing
on the error than the 1

2
h2y′′(tn) term. Thus, we consider the error as being

proportional to h2, and so the order of Euler’s method is 1.
A convergence plot can be used to numerically verify the theoretical order of

accuracy. by matching a numerical method against a problem with an analytical
solution. The absolute error at each timestep is computed and plotted (with
both axes on logarithmic scales) versus the stepsize h. Since the error ≈ Chp,

log(error) ≈ log(Chp) (5)

7

log(Chp) = log(C) + p(log(h)) (6)

which gives us the slope-intercept form of a line y = mx+b, as m = ρ, x = log(h),
and b = log(C).

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

E
rr

or

Step−size

Euler
Runge−Kutta
LIL

Figure 5: Error plot for the problem y′ = −y, y(0) = 1, t0 = 0, tend = 1, h =
0.001

In Figure 5 the error increases as the step size h increases. As expected,
the Euler’s method plot has a slope of approximately 1, while the 4th order
Runge-Kutta and LIL methods have error plots with slope 4.

5 Numerical experimentation

In the following experiments, we will use Runge-Kutta and LIL methods to solve
the Rabinovich-Fabrikant equations for various parameters (a, b) and obtain
phase portraits, which we will use to discuss the behavior of the system.

5.1 Region differences

For certain parameter sets, the phase portraits show qualitative similarities
but marked region differences. The set (a, b) = (0.1, 0.05) (Figures 6, 7), for
example, shows a clear difference in scale, with the 4th-order Runge-Kutta result
occupying a much larger space than the 4th-order LIL result.

8

−20
0

20

−20
0

20

−20

0

20

xy

z

(a) 4th-Order Runge-Kutta

−20
0

20

−20
0

20

−20

0

20

xy

z

(b) 4th-Order Local Iterative Linearization

Figure 6: Phase plots for a=0.1, b=0.05, dt = 0.001

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

y−axis

z−
ax

is

(a) 4th-Order Runge-Kutta

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

y−axis

z−
ax

is

(b) 4th-Order Local Iterative Linearization

Figure 7: Phase plots projected onto the yz plane for a=0.1, b=0.05, dt = 0.001

The figures were plotted from t0 = 0 to tEnd = 130, with step size h = 0.001
for both methods. Even the single variable vs. t plots are qualitatively very
similar with the exception of z vs. t, (Figure 8).

9

0 50 100 150
0

5

10

15

20

25

30

t

z(
t)

(a) 4th-Order Runge-Kutta

0 50 100 150
0

2

4

6

8

10

12

t

z(
t)

(b) 4th-Order Local Iterative Linearization

Figure 8: z(t) versus t plot for a = 0.1, b = 0.05

These plots are very similar until late in the progression of t, when the z

calculated with a 4th-order Runge-Kutta method rapidly moves from z ≤ 10
(at about t = 80) to 25 ≤ z (around t = 125.) The 4th order Local Iterative
Linearization result, by comparison, does not exceed z ≤ 12.

10

5.2 Agreement between methods

While qualitative agreements with regional differences were encountered in our
numerical experiments, a more common result was complete agreement between
methods, as seen with parameter settings (a, b) = (0.1, 0.14) (see Figure 9)

−2 −1 0 1
−0.5

0

0.5

1

1.5

2

x(t)

z(
t)

(a) 4th-Order Runge-Kutta

−2 −1 0 1
−0.5

0

0.5

1

1.5

2

x(t)

z(
t)

(b) 4th-Order Local Iterative Linearization

Figure 9: 2D phase plots (xz plane) for a = 0.1, b = 0.14

For these parameters, the numerical solutions were plotted from t0 = 0 to
tEnd = 200, with step size h = 0.001 for both methods. Single-variable versus
t plots in this case are also indistinguishable (for an example, see Figure 10
below.)

0 50 100 150 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

x

(a) LIL

0 50 100 150 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

x

(b) RK4

Figure 10: Single variable plots x versus t for a = 0.1, b = 0.14

Figure 10 also clearly identifies transient behavior before the ”saddle” at-
tractor manifests (as named in [4]. However, both methods show identical phase

11

plots, and the conic region which may be an artifact is clearly noticeable in the
x versus. t plot between t = 25 and t = 125.

In [5] it was reported that for parameter settings a = 0.3, b = 0.1 the LIL
method functions while the Runge-Kutta method does not. Our experimen-
tal results differ only slightly from these findings. The 4th-order LIL result
agrees perfectly with the 3rd-order result presented in [5] but the Runge-Kutta
plots (Fig 11)indicate the possibility of transient chaos in the system for these
parameter values.

−40
−20

0
20

40

−20

−10

0

10

20
0

50

100

150

200

x(t)y(t)

z(
t)

(a) RK4, t = 50

−40 −20 0 20 40

−20

0

20
0

50

100

150

200

250

300

x(t)
y(t)

z(
t)

(b) RK4, t = 60

−6
−4

−2
0

2

x 10
6

−5
0

5
10

15

x 10
6

−15

−10

−5

0

5

x 10
7

x(t)y(t)

z(
t)

(c) RK4, t = 70

Figure 11: RK4 results for a = 0.3, b = 0.1

The Runge-Kutta results here present a very different seeming-attractor for
low time values, but the eventual behavior is unbounded. This evidence of
transient chaos does not agree with the LIL result (an attractor) but with the
difficulty inherent in numerically studying the RF equations, it is impossible to
tell which (if either) of the methods yield correct results in this case.

12

5.3 Other methods

In the senior thesis which was the seed for this paper, all experiments were
also carried out using MATLAB’s ode45 solver, which uses the highly-efficient
Dormand-Prince Runge-Kutta method [14]. This method is easier to program
and rarely fails in the sense of results growing boundlessly. However, with the
inherent difficulty of studying a chaotic system of equations, we felt it were bet-
ter to avoid the additional complication of the adaptive step-size. The inclusion
of changing step-size presents yet another possible explanation for different re-
sults between methods. In our experience, ode45 results very often differ from
those of RK4 and LIL4. This is not to say that ode45 is without merit for this
problem - merely that it was excluded from this paper alone to avoid compli-
cating the interpretation of results. Future numerical research of this system
would benefit from the use of different methods such as Dormand-Prince and
Fehlberg adaptive Runge-Kutta Methods. Study of an instance of failure of an
adaptive method was presented in [15] and may help illustrate potential pitfalls
in the use of these methods.

6 Conclusions

The Rabinovich-Fabrikant equations have a relative lack of published research
when compared to more famous systems, and there is far more numerical ex-
perimentation in the literature than analytical results. It has been indicated
that numerical methods are statistically likely (to varying degrees as indicated
in [4]) to be modeling a chaotic system.

Additionally, it has been stated in the literature that Runge-Kutta methods
are unsuitable for this system [4]. However, our numerical experience indi-
cates that both Local Iterative Linearization methods and Runge-Kutta meth-
ods can become unstable for certain parameter settings (in our results, partic-
ularly (a, b) = (3.5, 0.1) or (0.2,−1). Furthermore, the implicit Local Iterative
Linearization method of 4th-order is not absolutely stable, and the implementa-
tion as a predictor-corrector method yields similar results to the Runge-Kutta
implementation while requiring longer, more intensive computations.

There are still many avenues for numerical experimentation with the Rabinovich-
Fabrikant equations. Extended precision floating point arithmetic could be used
to explore their sensitive dependence on initial conditions. As well, higher order
methods and absolutely stable methods could be used to reexamine phase por-
traits, especially for areas where 4th-order methods (and lower, as 3rd-order LIL
has been a prevalent method in literature) disagree. Newer developments such
as shadowing [12] and defect control [13] bear application to this system in order
to gain confidence in the validity of numerical methods for chaotic dynamical
systems.

13

Appendix: MATLAB Code

We have included MATLAB code (compatible with version 2008a) which imple-
ment the Runge-Kutta and Local Iterative methods used in this paper. These
are a suitable starting point for those wishing to expand on this research. Most
commenting has been omitted for brevity.

LIL4

The script in listing 1 performs the numerical integration only (for one step)
and so must be repeatedly utilized by a driver.

Listing 1: Fourth-order LIL method

1% Local I t e r a t i v e L in e a r i z a t i o n (LIL) , m=4

func t i on v = LIL4 (vm1 , vm2 , vm3 , vm4 , t , dt ,F)
fk = f e v a l (F,4∗vm1−6∗vm2+4∗vm3−vm4) ;

fm1 = f e v a l (F , vm1) ;
6fm2 = f e v a l (F , vm2) ;

fm3 = f e v a l (F , vm3) ;
fm4 = f e v a l (F , vm4) ;
h = (dt /12600) ;
uk = (h∗(6463∗ fk −2092∗fm1+2298∗fm2−1132∗fm3+223∗fm4)) ;

11v = 2∗vm1−(8/5)∗vm2+(26/35)∗vm3−(1/7)∗vm4 + uk ;

Listing 2 is a driver which declares all initial conditions and startup values
before using rk4 to find values for 3 steps after the initial conditions, providing
the 4 startup values to begin using LIL4 (Listing 1). The parameters (a, b) in
the Rabinovich-Fabrikant equations, are included as input parameters for the
function. Script for a 3D phase plot of the results is included.

Listing 2: Fourth-order LIL method driver

func t i on LIL4Driver (a , b)

t0 = 0 ; tEnd = 200 ;
4x0 = 0 . 1 ;

y0 = −0.1;
z0 = 0 . 1 ;
dt = 0 . 0 0 1 ;
T = t0 : dt : tEnd ;

9v = ze ro s (3 , l ength (T)) ;
v (: , 1) = [x0 ; y0 ; z0] ;

t = t0 ; %rk4 deve lops i n i t i a l va lue s
v (: , 2) = rk4 (v (: , 1) , t , dt ,@F) ;

14t = t+dt ;

14

v (: , 3) = rk4 (v (: , 2) , t , dt ,@F) ;
t = t+dt ;
v (: , 4) = rk4 (v (: , 3) , t , dt ,@F) ;
t = t+dt ;

19
k = 4 ; %counter

whi l e t<tEnd %perform LIL
v (: , k+1)=LIL4 (v (: , k) , v (: , k−1) ,v (: , k−2) ,v (: , k−3) , t , dt ,@F) ;

24t = t + dt ;
k = k + 1 ;
end

% 3D plo t
29p lo t3 (v (1 , :) , v (2 , :) , v (3 , :))

g r id on
x l ab e l ’ x (t) ’ , y l a b e l ’ y (t) ’ , z l a b e l ’ z (t) ’

%RF system
34func t i on f = F(x , t)

f = [x (2)∗ (x (3) − 1 + x (1)ˆ2) + a∗x (1) ;
x (1)∗ (3∗x (3) + 1 − x (1)ˆ2) + a∗x (2) ;
−2∗x (3)∗ (b + x (1)∗ x (2))] ;

end
39end

Runge-Kutta

Listing 3 implements the RK4 method described in the Numerical Methods
section. Again, it must be called by a driver.

Listing 3: Fourth-order Runge-Kutta method

func t i on v = rk4 (V, t , k ,F)

s1 = f e v a l (F ,V, t) ;
5s2 = f e v a l (F ,V + k∗ s1 /2 , t+k /2) ;

s3 = f e v a l (F ,V + k∗ s2 /2 , t+k /2) ;
s4 = f e v a l (F ,V + k∗ s3 , t+k) ;

v = V + k∗(s1 + 2∗ s2 + 2∗ s3 + s4)/ 6 ;

The RK4 driver in Listing 4 uses a set of initial values declared in the code with
(a, b) declared as input parameters for the function to numerically integrate the
RF equations.

15

Listing 4: Fourth-order Runge-Kutta method driver

func t i on r k4d r i v e r (a , b)

t0 = 0 ;
4dt = 0 . 0 0 1 ;

tEnd = 200 ;
x0 = 0 . 1 ;
y0 = −0.1;
z0 = 0 . 1 ;

9i n i t = [x0 ; y0 ; z0] ;
T = t0 : dt : tEnd ;
v = ze ro s (3 , l ength (T)) ;
v (: , 1) = [x0 ; y0 ; z0] ;
t = t0 ;

14k = 1 ;

whi l e t<tEnd
v (: , k+1) = rk4 (v (: , k) , t , dt ,@F) ;
t = t+dt ;

19k = k+1;
end

% 3D plo t
p lo t3 (v (1 , :) , v (2 , :) , v (3 , :))

24g r id on , x l a b e l ’ x (t) ’ , y l a b e l ’ y (t) ’ , z l a b e l ’ z (t) ’

% RF system
func t i on f = F(x , t)
f = [x (2)∗ (x(3)−1+x(1)ˆ2)+a∗x (1) ;

29x (1)∗ (3∗x(3)+ 1−x(1)ˆ2)+a∗x (2) ;
−2∗x (3)∗ (b+x (1)∗ x (2))] ;

end
end

References

[1] Rabinovich, M.I., A.L. Fabrikant. Stochastic self-modulation of waves in
nonequilibrium media. Zh. Eksp. Teor. Fiz. (Sov), 77 (1977) 617-629.

[2] Rössler, O.E. An equation for continuous chaos. Phys. Lett. A, 57(5),
(1976) 397-398.

[3] Lorenz, E.N. Deterministic nonperiodic flow. J. Atmospheric Sci. 20 (1963)
130-141

16

[4] Luo, Xiaodong, Michael Small, M.F. Danca, Guanrong Chen. On a dy-
namical system with multiple chaotic attractors. Int. J. Bif. Chaos., 17, 9

(2007) 3235-3251

[5] Danca, M.F. A multistep algorithm for ODEs. Dyn. Cont. Disc. Imp. Sys.,
13 (2006) 803-821

[6] Danca, M.F., Guanrong Chen. Bifurcation and chaos in a complex model
of dissipative medium. Int. J. Bif. Chaos, 14,10 (2004) 3409-3447.

[7] Devaney, Robert L. An Introduction to Chaotic Dynamical Systems (2003),
Westview.

[8] Strogatz, Steven H. Nonlinear dynamics and chaos (1994), Westview.

[9] Lambert, J.D., Computational Methods In Ordinary Differential Equations
(1973), John Wiley and Sons.

[10] Butcher, J.C. Numerical Methods for Ordinary Differential Equations
(2008), John Wiley and Sons.

[11] Iserles, Arieh. A First Course in the Numerical Analysis of Differential
Equations (1996), Cambridge University Press.

[12] Hayes, Wayne B., Kenneth R. Jackson. Rigorous shadowing of numerical
solutions of ordinary differential equations by containment. SIAM. J. Nu-
mer. Anal., 41, 5 (2003) 1948-1973

[13] Enright, W.H., Wayne B. Hayes. Robust and reliable defect control for
Runge-Kutta methods. ACM Trans. Math. Software, 33, 1 (2007)

[14] Dormand, J.R. and P.J. Prince. A family of embedded Runge-Kutta for-
mulae. J. Comp. App. Math. 6 (1980) 19-26.

[15] Skufca, J.D. Analysis Still Matters, A Surprising Instance of Failure of
Runge-Kutta-Felberg of ODE Solvers. SIAM Review, 46 (2004) 729-737

17

