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INTRODUCTION
Radial basis function (RBF) methods have been
used successfully for a variety of interpolation
problems as well as problems involving partial
differential equations on complex domains. A ra-
dial basis function is a function of the distance be-
tween two points. The class of radial basis func-
tions we will consider also accepts as an argument
a positive value ε called the shape parameter. RBF
methods are theoretically most accurate when ε is
small, but the direct implementation suffers from
an ill-conditioned linear system for small ε, which
significantly reduces accuracy. In recent years, a
few methods have been devised which attempt to
bypass this ill-conditioned linear system.

NUMERICAL MERCER EXPANSION
The Mercer method uses only RBFs with known
Mercer series expansions, which does not in-
clude common RBFs such as the multiquadric

RBF K(x, y) =

√
1 + ε2 ‖x− y‖2 and the inverse

quadratic RBF K(x, y) = 1
1+ε2‖x−y‖2 . However, a

numerical Mercer expansion may be obtained by
the following process:

1. Given one-dimensional interpolation points
{xn}Nn=1, choose M , the number of eigenval-
ues and eigenfunctions to use in the approx-
imate Mercer expansion, with M ≥ N .

2. For the Legendre-Gauss points {ym}Mm=1 on
[x0, xN ], form the M × M matrix B with
Bi,j = K(yi, yj), 1 ≤ i, j ≤M .

3. Solve the eigensystem Bum = λ∗mum for the
matrix eigenvalues λ∗m and the matrix eigen-
vectors um, and normalize each um.

4. Approximate the kernel eigenvalues λm as
λm ≈ λ∗

m

M for 1 ≤ m ≤M .

5. Approximate the kernel eigenfunctions as
ϕi(yj) ≈

√
M(ui)j for 1 ≤ i, j ≤M .

6. The Nyström method gives the approximate
value of the mth eigenfunction at any value
y as

ϕm(y) ≈
√
M

λ∗m
k(y)Tum,

where k(y)T = (K(y1, y), . . . ,K(yM , y)). [2]

7. Using the approximate values of the eigen-
functions at the interpolation points, we may
factor the N × N matrix B with Bi,j =
K(xi, xj) as B = ΦΛΦT , where Φi,j =
ϕj(xi), 1 ≤ i ≤ N , 1 ≤ j ≤ M , and Λi,i = λi,
1 ≤ i ≤M .

RESULTS

After factoring the system matrix as B = ΦΛΦT , the interpolation problem may be solved using the
QR method as outlined in [1]. Below are the results for interpolating the function f(x) = esin(πx) on
the interval [0, 1] with N = 25 uniformly spaced interpolation points and Ne = 50 uniformly spaced
evaluation points using the inverse quadratic RBF with varying shape parameter. The parameter M is
set at M = N , and the eigensystem in the numerical Mercer expansion is solved in quad precision.

Figure 1: Maximum interpolation error versus shape
parameter ε. The maximum error is decreasing until
approximately ε = 0.8, at which point the method be-
comes unstable and the maximum error begins to in-
crease. The numerical Mercer method outperforms the
direct RBF method when implemented in double preci-
sion (besides the eigensystem solution) in this example.

Figure 2: Condition number of the new system matrix
versus shape parameter ε. Compared to the direct RBF
method, the condition number for the numerical Mercer
method remains relatively constant when the method is
stable. For ε = 0.5, the condition number for the di-
rect RBF method is actually above 1035, so the numeri-
cal Mercer method succeeds in significantly improving
conditioning.

REFERENCES

[1] G. E. Fasshauer and M. McCourt. Stable evaluation
of Gaussian RBF interpolants. SIAM J. Sci. Comput.,
34(2):A737–A762, 2012.

[2] C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006.

FUTURE RESEARCH

Despite its failure to obtain stability for all val-
ues of ε, the numerical Mercer method in higher
precision may be used to study the eigenfunctions
of important radial basis functions for which the
Mercer expansion is not known analytically. Other

future research includes quantifying the relation-
ship between the shape parameter and the eigen-
value rate of decay in an effort to estimate the
amount of precision required to approximate the
Mercer expansion for a given radial basis function.
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CONCLUSION
From Figures 1 and 2, we see that the numerical Mercer method is effective at reducing the condition
number of the linear system, but it fails to reduce the maximum error for all values of the shape pa-
rameter. The reason for the method’s success in improving the conditioning is that the ill-conditioning
is contained in the eigenvalues, and the QR method is able to bypass that ill-conditioning. However,
isolating the ill-conditioning in the eigenvalues leads to a problem in the numerical Mercer expansion
itself. The eigenvalues decay geometrically, and the rate of decay is greater for small ε, so the eigenval-
ues quickly become too small to be accurately approximated with double or quad precision. As a result,
the eigenfunctions are not approximated in a stable manner and significant error is introduced. The only
remedy for this problem is to implement the eigensystem solution in higher precision.

MERCER METHOD
A common approach to solve this ill-conditioning
problem is to perform the interpolation in an alter-
nate manner which results in a well-conditioned
linear system. One recent method uses the fact that
an RBF may be viewed as a symmetric positive-
definite kernel K(x, y) for an integral operator

T [f ] =

∫ b

a

K(x, y)f(x)dx

on the space L2[a, b] of square-integrable func-
tions. By Mercer’s Theorem, this symmetric
positive-definite kernel may be represented as an
infinite series

K(x, y) =
∞∑
n=1

λnϕn(x)ϕn(y),

where λn is the nth eigenvalue and ϕn is the nth

normalized eigenfunction of the associated inte-
gral operator T . Furthermore, the eigenvalues are
positive and converge to zero as n→∞. [1]


