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1 Introduction

Most areas of numerical analysis, as well as many other areas of Mathemat-
ics as a whole, make use of the Chebyshev polynomials. In several areas,
e.g. polynomial approximation, numerical integration, and pseudospectral
methods for partial differential equations, the Chebyshev polynomials take
take a significant role. In fact, the following quote has been attributed to a
number of distinguished mathematicians:

“The Chebyshev polynomials are everywhere dense in numerical
analysis.”

In this manuscript we make use of Java applets to interactively explore some
of the classical results on approximation using Chebyshev polynomials. We
also discuss an active research area that uses the Chebyshev polynomials.
References [14, 15] are devoted to the Chebyshev polynomials may be con-
sulted for more detailed information than we provide in this brief presenta-
tion.

2 Overview of the Applets

The applets used are the:

Chebyshev polynomial (CP) applet. The CP applet plots the degree
zero to degree twelve Chebyshev polynomial. The degree of the poly-
nomial can be changed by changing the value of the slider at the bot-
tom of the applet.

Chebyshev approximation (CA) applet. The applet visualizes the in-
terpolatory, the continuous, the discrete, and the filtered Chebyshev
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approximations of several functions. The functions are described in
section 8 below. The functions can be selected in the applet from the
Functions menu at the top of the applet. The applet contains two
windows. In the left window the exact function is plotted in black.
Up to two approximations can be plotted (the first in blue and the
second in red) and compared by making selections from the Approx-
imations menu. By default the approximation error is displayed in
the right window. The magnitude of the Chebyshev coefficients can
be displayed in the right window by selecting plot coefficients from the
Options menu. The y-axis of the error or coefficient plot can be dis-
played on a log scale by selecting semiLogY from the Options menu.
The plot CGL points option marks the exact value of the interpolated
function in the left window with a green dot at the interpolation sites.
The connect (right) option on the options menu, when left unchecked,
allows the error plot to be displayed without the points on the graph
being connected. This sometimes produces a more pleasing plot on
a semilog scale when values are near zero. A parameters dialog can
be displayed by pressing the parameter dialog option from the options
menu. From the dialog the order of the exponential filter may be
changed as well as the number of evenly spaced points NP at which
the interpolants are evaluated.

Runge phenomenon (RP) applet. The RP applet illustrates the diver-
gence of equidistant polynomial interpolation by using a classic exam-
ple.

Exponential filter (EF) applet. The EF applet plots the value of the
exponential filter of degrees 2 to 32 by changing the value of the slider
at the bottom of the applet. The value of the filter is plotted versus
the normalized coefficient number n/N . The applet visualizes how
much each Chebyshev coefficient is modified by the filter.

3 Chebyshev Polynomials

The Chebyshev Polynomials (of the first kind) are defined as

Tn(x) = cos [n arccos(x)] . (1)

They are orthogonal with respect to the weight w(x) = (1 − x2)−1/2 on
the interval [−1, 1]. Intervals [a, b] other than [−1, 1] are easily handled by
the change of variable x → 1

2 [(b− a)x + a + b]. Although not immediately
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evident from definition (1), each Tn(x) is a polynomial of degree n. From
definition (1) we have that T0(x) = cos (0) = 1 and T1(x) = cos (arccosx) =
x. For n ≥ 1 we have the triple recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x) (2)

which can be shown to be true using basic trig identities. Using equation
(2) we see

T2(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2x(2x2 − 1)− x = 4x3 − 3x

T4(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1
...

and that the Chebyshev polynomials are indeed polynomials of degree n.

Applet Activity. What do the Chebyshev polynomials look like? The
Chebyshev polynomials of degree k = 0, 1, . . . , 12 can be plotted in the CP
applet below. Notice that |Tn(x)| ≤ 1. Since Tn(x) is a degree n polynomial
we can observe as expected that it has n zeros, which in this case are real
and distinct and located in [−1, 1].

Exercise.[Zeros of the Chebyshev polynomials.] Show that the zeros of
Tn(x) are

xk = cos
(

π(2k + 1)
2n + 2

)
, k = 0, 1, . . . , n (3)

The zeros are known as the Chebyshev-Gauss (CG) points.

4 Continuous Chebyshev Expansion

The infinite continuous Chebyshev series expansion is

f(x) ≈
∞∑

n=0

′αnTn(x) (4)
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where

αn =
2
π

∫ 1

−1
(1− x2)−1/2 f(x) Tn(x)dx. (5)

Truncating the series after N + 1 terms, we get the truncated continuous
Chebyshev expansion

SN (x) =
N∑

n=0

′αnTn(x). (6)

The single prime notation in the summation indicates that the first term is
halved. There are several functions in which the integral for the coefficients
αn can be evaluated explicitly, but this is not possible in general. Examples
included in the CA applet for which a continuous truncated expansion can
be derived are the sign function (32), f4(x) =

√
1− x2, and f5(x) = |x|.

The conditions which must be placed on f to ensure the convergence of
the series (4) depend on the type of convergence to be established: pointwise,
uniform, or L2. At the lowest level, the series (4) converges pointwise to f
at points where f is continuous in [−1, 1] and converges to the left and right
limiting values of f at any of a finite number of jump discontinuities in the
interior of the interval.

Applet Activity. The sign function in the CA applet has a jump disconti-
nuity at x0 = 0 and has the limiting values on each side of the discontinuity
of f(x0+) = 1 and f(x0−) = −1. Thus the series converges to zero at this
point, i.e.

SN (x0) ≈ 1
2
[f(x+

0 ) + f(x−0 )]

for sufficiently large N . In the applet select the sign function from the Func-
tions menu and check the blue continuous, S option on the Approximation
menu. Using the slider at the bottom of the applet, slowly adjust N from
N = 7 to N = 128 and observe that the value of SN (0) is approximately
zero.

If f(x) is an even function then αk = 0 for k = 1, 3, 5, . . .. If f(x) is an
odd function then αk = 0 for k = 0, 2, 4, . . ..

Applet Activity. The above fact can be observed in the truncated con-
tinuous expansion of f(x) =

√
1− x2 and f(x) = |x| (even) and f(x) =

sign(x) (odd) in the CA applet. For example, select the even function
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f(x) =
√

1− x2 which is labelled as sqrt on the Functions menu and se-
lect the blue continuous, S option on the Approximation menu. Then on
the options menu check plot coefficients and using the slider slowly adjust
N from N = 7 to N = 21. In the right window observe that αk = 0 for
k = 1, 3, 5, . . .. The magnitude of the coefficients can also be viewed with
the y-axis scaled logarithmically (semiLogY on the options menu). How-
ever, in this case the coefficients which are zero are not plotted as log(0) is
undefined.

5 Discrete Chebyshev Expansions

When the integral in (5) can not be evaluated exactly, we can introduce a
discrete grid and use a numerical quadrature (integration) formula. Several
possible grids, and related quadrature formulas exist. The Chebyshev-
Gauss-Lobatto (CGL) points

xk = − cos
(

kπ

N

)
k = 0, 1, . . . , N (7)

are a popular choice of quadrature points. The CGL points are where the
n− 1 extrema of Tn(x) occur plus the endpoints of the interval [−1, 1].

Applet Activity. Using the CP applet, observe how the extrema of the
Chebyshev polynomials are not evenly distributed and how they cluster
around the boundary. In the CA applet, the CGL points may be plotted
by checking plot CGL points on the options menu. Try this with the sign
function starting with N = 9 and then with increasing N .

Exercise.[Extrema of the Chebyshev polynomials] Show that Tn(x) = ±1
at the n− 1 CGL points.

The corresponding CGL quadrature formula is

∫ 1

−1

f(x)dx√
1− x2

≈ π

N

N∑

j=0

′′f(xk). (8)
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If f(x) is a polynomial of degree less than or equal to 2N − 1, the CGL
quadrature formula is exact. This is remarkable accuracy considering that
the values of the integrand are only known at the N + 1 CGL points. Using
the CGL quadrature formula to evaluate the integral in (5), the discrete
Chebyshev coefficients an are defined to be

αn ≈ an =
2
N

N∑

k=0

′′f(xk)Tn(xk) (9)

and the discrete truncated partial sum is

PN (x) =
N∑

n=0

′anTn(x). (10)

Using definition (9) takes O(N2) floating point operations (flops) to eval-
uate the discrete Chebyshev coefficients. For large N , a better choice is the
fast cosine transform (FCT) [4] which takes O(N log2 N) flops. For exam-
ple, if N = 1000, N2 = 1, 000, 000 while N log2 N < 10, 000. The extreme
efficiency of the FCT is one reason for the popularity of Chebyshev approx-
imations in applications.

5.1 Interpolating Partial Sum

Requiring that the approximation be interpolating, i.e., requiring that it
satisfy

PN (xi) = f(xi) i = 0, 1, . . . , N (11)

we get the interpolating partial sum

IN (x) =
N∑

n=0

′′anTn(x). (12)

The double prime notation in the summation indicates that the first and last
terms are halved. The interpolating partial sum would be equal to the trun-
cated series with the coefficients approximated via CGL quadrature except
the last coefficient is halved. This is due to the choice of quadrature points.
If Gaussian quadrature, which uses the Chebyshev-Gauss (CG) points, had
been used instead of CGL quadrature, the interpolating and discrete trun-
cated partial sum would be identical. The CG points are the zeros of Tn(x)
and do not include x = ±1. Chebyshev pseudospectral methods for solv-
ing PDEs usually incorporate the CGL points and not the CG points. The
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reason for this is that the discrete grid must include the boundary points
so that the boundary conditions of the PDE can be incorporated into the
numerical approximation.

Applet Activity. Using the applet we can observe the difference between
SN , PN , and IN . For example if we use the sign function (select sign from
the Functions menu) with N = 11 (set N using the slider at the bottom of
the applet) and plot the CGL points (check plot CGL points on the Options
menu) we see that IN goes through the interpolation sites while SN and PN

do not (On the Approximations menu, select the blue interpolation, I and
then the red discrete, P. Then select the red continuous, S to make the next
comparison).

Since (12) is a polynomial of at most degree N that satisfies the in-
terpolation condition (11) at N + 1 distinct points, a standard result from
numerical analysis tells us that IN is the unique interpolating polynomial [5,
p. 106]. The interpolating polynomial may be written in several equivalent
forms: Lagrange, Newton, and Barycentric. For information on the merits
of each form, see [1]. The Lagrange form of the interpolating polynomial is

IN (x) =
N∑

k=0

f(xk)Lk(x)

where

Lk(x) =
N∏

i=0,i6=k

x− xi

xk − xi
(13)

are cardinal polynomials that satisfy

Lk(xi) =
{

1, i = k
0, i 6= k.

(14)

The Lagrange form gives an error term of the form

eN (x) = f(x)− IN (x) =
f (N+1)(ξ(x))

(N + 1)!
Ψ(x) (15)

where

Ψ(x) =
N∏

j=0

(x− xj). (16)
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The underlying function f(x) is often unknown and the number ξ is only
known in simple examples. Thus, Ψ(x) is the only part of the error term
which can be controlled. By using the CG or CGL points as interpolation
cites, Ψ(x) is made nearly as small as possible [5, p. 507]. On the other
hand, it is well known that polynomial interpolation in equally spaced points
can be troublesome. The classic example provided by Runge is the function

f(x) =
1

1 + x2
, −5 ≤ x ≤ 5. (17)

For the function (17), equidistant polynomial interpolation diverges for
|x| > 3.63. By using the CGL points (7), which cluster densely around
the endpoints of the interval, as interpolation sites the nonuniform conver-
gence (the Runge Phenomenon) associated with equally spaced polynomial
interpolation is avoided.

Applet Activity. The RP applet illustrates equidistant and Chebyshev
interpolation for the Runge example (17). The applet starts with N = 15
and equidistant interpolation. Use the slider to increase N and observe that
the oscillations near the boundary become larger and that the approximation
is good for |x| < 3.63. Select the CGL button at the top of the applet and
observe that the oscillations near the boundary disappear.

5.2 Aliasing

Introducing a discrete grid leads to aliasing. The discrete coefficients can
be expressed in terms of the continuous coefficients as

an = αn +
∞∑

j=1

(αn+2jN + α−n+2jN ) . (18)

As an example consider the sign function with N = 9. The difference
between the discrete coefficient a5 and the continuous coefficient α5 can be
quantified by the aliasing relation (18) as

a5 − α5 = α23 + α41 + α59 + . . .

+ α13 + α31 + α49 + . . . .

This relation is a result of the fact that on the discrete grid, T5 is identical
to T23, T41, T59, . . . and also to T13, T31, T49, . . . as is illustrated in figure 1.
The image was produced with the following Matlab script:

8



N = 9; M = 600;
x = -cos(pi*(1:9)./N); % extrema and endpoints of T10

xp = linspace(-1,1,M);

T23 = cos(23*acos(xp)); % cyan
T13 = cos(13*acos(xp)); % green
T5 = cos( 5*acos(xp)); % blue

T5g = cos( 5*acos(x)); % T_5(x) (red *)

XGL10 = zeros(1,length(x)); % CGL pts (open black circles)

plot(xp,T5,’b’,xp,T13,’g’,x,T5g,’r*’,x,XGL10,’k-o’,xp,T23,’c’)
xlabel ’x’, ylabel ’T’

Applet Activity. In the CA applet, observe the difference between the
odd numbered coefficients of the S9, P9 and I9 approximations of the sign
function (select sign from the Functions menu and set N = 9 using the
slider at the bottom of the applet). On the Approximations menu, select
the blue interpolation, I and then select the red continuous, S. On the Ap-
proximations menu select plot coefficients. There is no difference in the even
numbered coefficients, as the sign function is odd. Thus the continuous even
coefficients that are involved in the aliasing relation are all zero. The dif-
ference in the odd coefficients is due to aliasing. Make a similar comparison
with the truncated discrete series by selecting the blue discrete, P from the
approximations. Again there is a difference in the odd coefficients that is
due to aliasing.

Now compare the two discrete approximations, I9 (blue interpolation, I )
and P9 (red discrete, P). The coefficients are identical, but the approxima-
tions are different due to α9 being halved in the interpolating approximation
but not in the truncated series.

6 Rates of Convergence

Repeatedly integrating equation (5) by parts we get

αn =
1

nm

2
π

∫ 1

−1
(1− x2)−1/2 f (m)(x) Tn(x)dx. (19)
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Figure 1: On the CGL grid (open black circles) for N = 9 T5 is identical
to T13 (green) and T23 (cyan). Points of intersection on the CGL grid are
marked with red *’s.

Thus, if f(x) is m-times (m ≥ 1) continuously differentiable in [−1, 1] the
above integral will exist and we can conclude that

αn = O(n−m), n = 1, 2, . . . . (20)

If we make a careful choice of which definition of the integral to use, the
same result can be shown to be true if f(x) is (m − 1)-times differentiable
a.e. (almost everywhere) in [−1, 1] with its (m− 1)th derivative of bounded
variation in [−1, 1].

Since the absolute value of each Tk is bounded above by one on [−1, 1],
it follows that the truncation error for the continuous expansion is bounded
by the sum of the absolute value of the neglected coefficients:

|f(x)− SN (x)| ≤
∞∑

n=N+1

|αn|. (21)

A similar bound, with an additional factor of two, holds for the interpolating
partial sum:

|f(x)− IN (x)| ≤ 2
∞∑

n=N+1

|αn| (22)

for x ∈ [−1, 1]. From (20), (21), and (22) we conclude that

|f(x)− SN (x)| = O(N−m) (23)

10



and
|f(x)− IN (x)| = O(N−m). (24)

If f is infinitely differentiable the convergence is faster than O(N−m) no
matter how large we take m. This is commonly termed spectral accuracy
or exponential accuracy. If f can be extended to an analytic function in a
suitable region of the complex plane, the pointwise error on [−1, 1] can be
shown to be

O(r−N ) (25)

for some r > 1 [14]. In figure 2 the rather slow decay rate of the error with
increasing N is illustrated for the absolute value function (35) for which
m = 1. This can be contrasted with the rapid spectral convergence of the
infinitely smooth function (33) which is also illustrated in figure 2. Notice
that the decay of error for the smooth function ceases at about N = 140.
This is due to the accuracy of the representation of floating point numbers
on the computer which limits accuracy to about 14 or 15 decimal places.

No matter what rate of decay the coefficients have, the convergence rate
is only observed for n > n0. Using an approximation with fewer than n0

terms may result in a very bad approximation. For example, the decay rate
of the coefficients of the infinitely smooth function in the applet is not yet
evident for N = 17 and the approximation is very poor.
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Figure 2: Convergence of an infinitely differentiable function f2(x) =
ecos(8x3+1) vs. convergence of a continuous function f5(x) = |x|.
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Applet Activity. Equation (19) allows us to conclude that if f is a poly-
nomial of degree N , then αn = 0 for all n > N since f (n)(x) = 0 n > N . In
the CP applet select the “7th degree polynomial” from the Functions menu.
Use the slider at the bottom of the applet to set N to 9. From the Options
menus check plot coefficients and semiLogY. Observe that ak = 0 (to within
machine precision) for n > 7.

If m = 0, i.e, f is discontinuous, the accuracy of the Chebyshev ap-
proximation methods reduces to O(1) near the discontinuity. Sufficiently
far away from the discontinuity, the convergence will be slowed to O(N−1).
Oscillations will be present near the discontinuity and they will not diminish
as N → ∞. Additionally, the oscillations will not even be localized near a
discontinuity. This situation is referred to as the Gibbs phenomenon. A nice
history of the Gibbs phenomenon can be found in [12].

Applet Activity. From the Functions menu select the sign function. From
the Options menus uncheck plot coefficients and check semiLogY. Use the
slider at the bottom of the applet to slowly change N from 10 to 256.
Observe that the maximum amplitude of the overshoot at the discontinuity
does not decrease with increasing N . Observe that sufficiently far away from
the discontinuity that the oscillations are slowly decaying. Now check plot
coefficients on the Options menu and again use the slider at the bottom of
the applet to slowly change N from 10 to 256. Notice that the coefficients
are decaying, but at a very slow rate. Spectral convergence has been lost
due to the discontinuity. Select the “smooth” function from the Functions
menu and compare how fast the coefficients of this function decay compared
to the sign function.

7 Filters

Spectral filters can be used to enhance the decay rate of the Chebyshev
coefficients [20] and to lessen the effects of the Gibbs phenomenon. The
filtered Chebyshev approximation is

FN (x) =
N∑

n=0

σ
( n

N

)
anTn(x) (26)
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where σ is a spectral filter. A pth (p > 1) order spectral filter is defined as
a sufficiently smooth function satisfying

σ(0) = 1 (27)
σ(m)(0) = 0 m = 1, 2, . . . , p− 1 (28)
σ(m)(1) = 0 m = 0, 1, . . . , p− 1. (29)

The convergence rate of the filtered approximation is determined solely by
the order of the filter and the regularity of the function away from the point
of discontinuity.

If p is chosen increasing with N , the filtered expansion recovers expo-
nential accuracy away from a discontinuity. Assuming that f(x) has a dis-
continuity at x0 and setting d(x) = x− x0, the estimate

|f(x)−FN (x)| ≤ K

d(x)p−1Np−1
(30)

holds where K is a constant. If p is sufficiently large, and d(x) not too
small, the error goes to zero faster than any finite power of N , i.e. spectral
accuracy is recovered. When x is close to a discontinuity the error increases.
If d(x) = O(1/N) then the error estimate is O(1).

Many different filter functions are available, but perhaps the most ver-
satile and widely used filter is the exponential filter

σ(ω) = exp(−αω2p) p = 1, 2, . . . (31)

of order 2p. In order for condition (29) to be satisfied, the parameter α
is taken as α = − ln εm where εm is defined as machine zero. On a 32-
bit machine using double precision floating point operations, εm = 2−52 ≈
2.2204e-16 and ln(ε) ≈ −36.0437.

Applet Activity. The exponential filter is implemented in the CA applet.
The default order of the filter is 4 (p = 2). Select the sign function from
the Functions menu. From the Approximations menu select the blue in-
terpolation and red filter options. From the options menu check semiLogY
and uncheck connect. Use the slider to increase N and observe the rapid
decrease in the error of the filtered approximation away from the discon-
tinuity. The filter has restored spectral accuracy at points sufficiently far
away from the discontinuity. Next, check plot coefficients on the options
menu and compare the filtered and unfiltered coefficients. Now, display the
parameters dialog from the options menu and enter 1 in the filter order box
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to change the order of the filter to 2. Repeat the above experiments. Ob-
serve how the sharp front at the discontinuity is rounded or smeared in the
filtered approximation by the low order filter. Enter 4 in the filter order box
to change the order of the filter to 8 and repeat. What do you observe?

Applet Activity. Select the absolute value function from the Functions
menu and repeat the previous applet activity.

Applet Activity. The EP applet illustrates the strength of the damping
applied in equation (26) to the coefficients ak from k = 0, 1, . . . , N for filters
of order 2 to 32. The slider at the bottom of the applet can be used to change
the order of the filter. Observe that as the order of the filter increases that
less damping is applied to the coefficients with small k.

8 Applet Example Functions

The example functions included in the applet are the sign function (m = 0)

f1(x) =
{

1 −1 ≤ x ≤ 0,
−1 0 < x ≤ 1,

(32)

the “smooth” function (m = ∞)

f2(x) = ecos(8x3+1), (33)

the square root function (m = 1)

f4(x) =
√

1− x2, (34)

the absolute value function (m = 1)

f5(x) = |x|, (35)

and a seventh degree polynomial

f6(x) = x7 − 2x6 + x + 3. (36)
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9 Current Research Area

Chebyshev approximation is an old and rich subject. However, many ar-
eas that employ Chebyshev polynomials have open questions that have at-
tracted the attention of current researchers. One example is pseudospectral
methods for the numerical solution of partial differential equations (PDEs).
Chebyshev pseudospectral methods, which are based on the interpolating
Chebyshev approximation (12), are well established as powerful methods
for the numerical solution of PDEs with sufficiently smooth solutions.

Interpolation means that f(x), the function that is approximated, is
a known function. The terms collocation and pseudospectral are applied to
global polynomial interpolatory methods for solving differential equations for
an unknown function f(x). Detailed information on pseudospectral methods
may be found in the standard references [3, 6, 7, 9, 10, 19].

Many important PDEs have discontinuous (or nearly discontinuous) so-
lutions. See the article [16] for a discussion of one such class of PDEs,
nonlinear hyperbolic conservation laws. In these cases, the Chebyshev pseu-
dospectral method produces approximations that are contaminated with
Gibbs oscillations and suffer from the corresponding loss of spectral accu-
racy, just like the Chebyshev interpolation methods that the pseudospectral
methods are based on.

An active research area is the development of postprocessing methods
to remove the Gibbs oscillations from PDE solutions and to restore spectral
accuracy. Spectral filters may be used but they perform poorly in the neigh-
borhood of discontinuities. More sophisticated methods that do better in
the area of discontinuities, but they may need to know the exact location of
the discontinuities. The methods include Spectral Mollification, Gegenbauer
Reconstruction [11], Padé Filtering, and Digital Total Variation Filtering.
Several postprocessing methods with applications are discussed in [17] with
supporting web material at http://www.scottsarra.org/signal/signal.html.
The ultimate goal is a “black box” postprocessing algorithm, which can be
given an oscillatory PDE solution and return a postprocessed solution with
spectral accuracy restored.

10 Further Explorations

In addition to the exponential filter, other postprocessing methods for less-
ening the effects of the Gibbs phenomenon exist. Explore some of them
which include:
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1. Other spectral filters. See [2].

2. Reprojection methods. Reprojection methods work by projecting the
slowly converging Chebyshev approximation onto a Gibbs complemen-
tary basis in which the convergence is faster. See [8, 11, 17].

3. Padé based reconstruction. Padé methods reconstruct the Chebyshev
polynomial approximation as a rational approximation [13].

4. Digital Total Variation (DTV) filtering. DTV methods which were de-
veloped in image processing have been used to postprocess Chebyshev
approximations. See [18].

11 Summary

Chebyshev approximation and its relation to polynomial interpolation at
equidistant nodes has been discussed. We have illustrated how the Cheby-
shev methods approximate with spectral accuracy for sufficiently smooth
functions and how less smoothness slows down convergence. We have illus-
trated how the presence of a discontinuity leads to lack of convergence at
the discontinuity and leads to slowed convergence away from the disconti-
nuity. We have described the Gibbs phenomenon which is characterized by
a lack of or slow convergence as well as non-physical oscillations. Spectral
filtering was discussed as a method used to lessen the effects of the Gibbs
phenomenon and to restore spectral accuracy sufficiently far away from a
discontinuity. Postprocessing methods to lessen the effects of the Gibbs os-
cillations are an active research area which would be an excellent topic for
undergraduate research or as the topic of a Masters thesis.
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