MPT Functions and PDE Problems

These are the functions and PDE problems that are included in the MPT GUI.

1 1d Functions Menu

- step

$$
f(x)= \begin{cases}-1 & x \leq 0 \tag{1}\\ 1 & x>0\end{cases}
$$

- x

$$
\begin{equation*}
f(x)=x \tag{2}
\end{equation*}
$$

- W

$$
f(x)= \begin{cases}1 & -0.4 \leq x \leq-0.2 \tag{3}\\ \frac{15}{4} x+1 & -0.2 \leq x<0 \\ \frac{-15}{4} x+1 & 0 \leq x \leq 0.2 \\ 1 & 0.2 \leq x \leq 0.4 \\ 0 & \text { otherwise }\end{cases}
$$

- 2 jumps

$$
f(x)= \begin{cases}\cos (\pi x / 2) & x<-0.5 \tag{4}\\ x^{3}-\sin (3 \pi x / 2) & -0.5 \leq x \leq 0.5 \\ x^{2}+4 x^{3}-5 x & x>0.5\end{cases}
$$

- discontinuous sin

$$
f(x)= \begin{cases}\sin \frac{\pi}{2}(x+1) & x \leq 0 \tag{5}\\ -\sin \frac{\pi}{2}(x+1) & x>0\end{cases}
$$

- sharp peak center

$$
f(x)=\left\{\begin{array}{cc}
-1-x & x \leq 0 \tag{6}\\
(1-x)^{6} & x>0
\end{array}\right.
$$

- smooth

$$
\begin{equation*}
f(x)=\exp \left[\cos \left(8 x^{3}+1\right)\right] \tag{7}
\end{equation*}
$$

- difficult test

$$
f(x)= \begin{cases}\frac{1}{6}[G(x, \beta, z-\delta)+G(x, \beta, z+\delta)+4 G(x, \beta, z)] & -0.8 \leq x \leq-0.6 \tag{8}\\ 1 & -0.4 \leq x \leq-0.2 \\ 1-|10(x-0.1)| & 0 \leq x \leq 0.2 \\ \frac{1}{6}[F(x, \alpha, a-\delta)+F(x, \alpha, a+\delta)+4 F(x, \alpha, a)] & 0.4 \leq x \leq 0.6 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\begin{gathered}
G(x, \beta, z)=e^{-\beta(x-z)^{2}}, \\
F(x, \alpha, a)=\sqrt{\max \left(1-\alpha^{2}(x-a)^{2}, 0\right)}
\end{gathered}
$$

with $a=0.5, z=-0.7, \delta=0.005, \alpha=10$, and $\beta=\frac{\log 2}{36 \delta^{2}}$.

- saw tooth

$$
f(x)= \begin{cases}x+1 & x<0 \tag{9}\\ x-1 & x \geq 0\end{cases}
$$

- center step

$$
f(x)= \begin{cases}0 & x<-0.4 \tag{10}\\ 1 & -0.4 \leq x \leq 0.4 \\ 0 & x>0.4\end{cases}
$$

- sharp peak off-center

$$
f(x)= \begin{cases}(2 \exp [2 \pi(x+1)]-1-\exp (\pi)) /(\exp (\pi)-1) & x<-0.5 \tag{11}\\ -\sin (2 \pi x / 3+\pi / 3) & x \geq-0.5\end{cases}
$$

- Shepp-Logan slice. Slice along constant $y=0.5$ of the Modified Shepp-Logan phantom from Matlab Image Processing Toolbox.
- $\sin [\cos (\mathrm{x})] * \mathrm{I}[-0.5,0.5]$

$$
f(x)= \begin{cases}0 & x<-0.5 \tag{12}\\ \sin [\cos (x)] & -0.5 \leq x<0.5 \\ 0 & x \geq 0.5\end{cases}
$$

- discontinuous first derivative

$$
f(x)= \begin{cases}-x & x<0 \tag{13}\\ 2 x & x \geq 0\end{cases}
$$

- discontinuous, periodic

$$
\begin{equation*}
f(x)=|x| \tag{14}
\end{equation*}
$$

- analytic and periodic

$$
\begin{equation*}
f(x)=\exp [\sin (3 \pi x)+\cos (\pi x)] \tag{15}
\end{equation*}
$$

- discontinuity in f and f^{\prime}

$$
f(x)= \begin{cases}-x & x<0 \tag{16}\\ 2 x & 0 \leq x<0.5 \\ 0 & x \geq 0.5\end{cases}
$$

2 2d Functions Menu

- square

$$
f(x, y)= \begin{cases}1 & |x| \leq 0.5 \text { and }|y| \leq 0.5 \tag{17}\\ 0 & \text { otherwise }\end{cases}
$$

- circular, non-constant

$$
f(x, y)= \begin{cases}3 x+2 y^{2}+3 & \left(x^{2}+y^{2}\right)<0.25 \tag{18}\\ 0 & \text { otherwise }\end{cases}
$$

- circular, constant

$$
f(x, y)= \begin{cases}1 & \left(x^{2}+y^{2}\right)<0.25 \tag{19}\\ 0 & \text { otherwise }\end{cases}
$$

- circular, non-compact support

$$
f(x, y)= \begin{cases}10 x+5+x y+\cos \left(2 \pi x^{2}\right)-\sin \left(2 \pi x^{2}\right) & \left(x^{2}+y^{2}\right) \leq 0.25 \tag{20}\\ 10 x-5+x y+\cos \left(2 \pi x^{2}\right)-\sin \left(2 \pi x^{2}\right) & \text { otherwise }\end{cases}
$$

- Shepp-Logan. Modified Shepp-Logan phantom from the Matlab Image Processing Toolbox.
- periodic, discontinuous

$$
\begin{gather*}
a(x, y)= \begin{cases}\sin [\pi(x+y)] & |x|+|y| \leq 0.5 \\
0 & \text { otherwise }\end{cases} \tag{21}\\
b(x, y)= \begin{cases}\sin [\pi(x+y)] & |x|+|y|>0.75 \\
0 & \text { otherwise }\end{cases} \tag{22}\\
f(x, y)=a(x, y)-b(x, y) \tag{23}
\end{gather*}
$$

3 PDE Problems Menu

PDE solutions have been calculated with $N=64,128,256,512$

- Fourier - Linear Advection. The advection equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0 \tag{24}
\end{equation*}
$$

with periodic boundary conditions.
$-\mathrm{dt}=0.001(\mathrm{~N}=512), 0.005(256,128), 0.01(64), 4$ th order Runge-Kutta
$-\mathrm{T}=2.0$

- Fourier - inviscid Burgers'. Inviscid Burgers' equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=0 \tag{25}
\end{equation*}
$$

with periodic boundary conditions.

- initial condition $u(x, 0)=\sin [\pi(x+1)]$
- stabilized with order $\rho=16$ exponential filter
$-\mathrm{dt}=0.001$
$-\mathrm{T}=2 / \pi$
- Chebyshev - Linear Advection. Equation (25) with inflow/outflow boundary conditions.
$-\operatorname{gird} x=\arcsin [\gamma \cos (\pi x)] / \arcsin (\gamma), \gamma=0.99(\mathrm{~N}=64,128,256), \gamma=0.999$ (512)
$-\mathrm{dt}=0.01(\mathrm{~N}=64), 0.005$ (128), 0.002 (256), 0.001 (512)
$-\mathrm{T}=2$
- Chebyshev - Euler density. A spectral viscosity approximation of the density solution of Sod's problem for the Euler Equations of Gas Dynamics.
$-\mathrm{T}=0.4$
$-\mathrm{N}=128 ; \mathrm{dt}=0.0005 ;$ gamma $=0.99 ; \mathrm{C}=1 ; \mathrm{s}=4$;
$-\mathrm{N}=256 ; \mathrm{dt}=0.0025$; gamma $=0.999 \mathrm{C}=1 ; \mathrm{s}=4$;
$-\mathrm{N}=512 ; \mathrm{dt}=0.00025 ;$ gamma $=0.999 ; \mathrm{C}=1 ; \mathrm{s}=5$;
- stabilized with the super spectral viscosity operator

$$
\left(C N^{1-2 s}\right)(-1)^{s+1}\left[\sqrt{1-x^{2}} \frac{\partial}{\partial x}\right]^{2 s} \mathcal{I}_{N} u
$$

